vpelloin commited on
Commit
4148783
·
1 Parent(s): aafa9e1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +22 -11
README.md CHANGED
@@ -22,21 +22,25 @@ tags:
22
  This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/).
23
  It maps each input words into outputs concepts tags (76 available).
24
 
25
- This model is trained with [`flaubert-oral-asr`](https://huggingface.co/nherve/flaubert-oral-asr) as it's inital checkpoint.
26
 
27
  ## Available MEDIA NLU models:
28
- - [`MEDIA_NLU-flaubert_base_cased`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_base_cased): MEDIA NLU model trained with [`flaubert_base_cased`](https://huggingface.co/flaubert/flaubert_base_cased) as it's inital checkpoint
29
- - [`MEDIA_NLU-flaubert_base_uncased`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_base_uncased): MEDIA NLU model trained with [`flaubert_base_uncased`](https://huggingface.co/flaubert/flaubert_base_uncased) as it's inital checkpoint
30
- - [`MEDIA_NLU-flaubert_oral_ft`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_ft): MEDIA NLU model trained with [`flaubert-oral-ft`](https://huggingface.co/nherve/flaubert-oral-ft) as it's inital checkpoint
31
- - [`MEDIA_NLU-flaubert_oral_mixed`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_mixed): MEDIA NLU model trained with [`flaubert-oral-mixed`](https://huggingface.co/nherve/flaubert-oral-mixed) as it's inital checkpoint
32
- - [`MEDIA_NLU-flaubert_oral_asr`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_asr): MEDIA NLU model trained with [`flaubert-oral-asr`](https://huggingface.co/nherve/flaubert-oral-asr) as it's inital checkpoint
33
- - [`MEDIA_NLU-flaubert_oral_asr_nb`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_asr_nb): MEDIA NLU model trained with [`flaubert-oral-asr_nb`](https://huggingface.co/nherve/flaubert-oral-asr_nb) as it's inital checkpoint
34
 
35
  ## Usage with Pipeline
36
  ```python
37
  from transformers import pipeline
38
 
39
- generator = pipeline(model="vpelloin/MEDIA_NLU-flaubert_oral_asr", task="token-classification")
 
 
 
 
40
  sentences = [
41
  "je voudrais réserver une chambre à paris pour demain et lundi",
42
  "d'accord pour l'hôtel à quatre vingt dix euros la nuit",
@@ -53,8 +57,12 @@ from transformers import (
53
  AutoTokenizer,
54
  AutoModelForTokenClassification
55
  )
56
- tokenizer = AutoTokenizer.from_pretrained("vpelloin/MEDIA_NLU-flaubert_oral_asr")
57
- model = AutoModelForTokenClassification.from_pretrained("vpelloin/MEDIA_NLU-flaubert_oral_asr")
 
 
 
 
58
 
59
  sentences = [
60
  "je voudrais réserver une chambre à paris pour demain et lundi",
@@ -64,7 +72,10 @@ sentences = [
64
  ]
65
  inputs = tokenizer(sentences, padding=True, return_tensors='pt')
66
  outptus = model(**inputs).logits
67
- print([[model.config.id2label[i] for i in b] for b in outptus.argmax(dim=-1).tolist()])
 
 
 
68
  ```
69
 
70
  ## Reference
 
22
  This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/).
23
  It maps each input words into outputs concepts tags (76 available).
24
 
25
+ This model is trained using [`nherve/flaubert-oral-asr`](https://huggingface.co/nherve/flaubert-oral-asr) as its inital checkpoint.
26
 
27
  ## Available MEDIA NLU models:
28
+ - [`vpelloin/MEDIA_NLU-flaubert_base_cased`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_base_cased): MEDIA NLU model trained using [`flaubert/flaubert_base_cased`](https://huggingface.co/flaubert/flaubert_base_cased)
29
+ - [`vpelloin/MEDIA_NLU-flaubert_base_uncased`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_base_uncased): MEDIA NLU model trained using [`flaubert/flaubert_base_uncased`](https://huggingface.co/flaubert/flaubert_base_uncased)
30
+ - [`vpelloin/MEDIA_NLU-flaubert_oral_ft`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_ft): MEDIA NLU model trained using [`nherve/flaubert-oral-ft`](https://huggingface.co/nherve/flaubert-oral-ft)
31
+ - [`vpelloin/MEDIA_NLU-flaubert_oral_mixed`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_mixed): MEDIA NLU model trained using [`nherve/flaubert-oral-mixed`](https://huggingface.co/nherve/flaubert-oral-mixed)
32
+ - [`vpelloin/MEDIA_NLU-flaubert_oral_asr`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_asr): MEDIA NLU model trained using [`nherve/flaubert-oral-asr`](https://huggingface.co/nherve/flaubert-oral-asr)
33
+ - [`vpelloin/MEDIA_NLU-flaubert_oral_asr_nb`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_asr_nb): MEDIA NLU model trained using [`nherve/flaubert-oral-asr_nb`](https://huggingface.co/nherve/flaubert-oral-asr_nb)
34
 
35
  ## Usage with Pipeline
36
  ```python
37
  from transformers import pipeline
38
 
39
+ generator = pipeline(
40
+ model="vpelloin/MEDIA_NLU-flaubert_oral_asr",
41
+ task="token-classification"
42
+ )
43
+
44
  sentences = [
45
  "je voudrais réserver une chambre à paris pour demain et lundi",
46
  "d'accord pour l'hôtel à quatre vingt dix euros la nuit",
 
57
  AutoTokenizer,
58
  AutoModelForTokenClassification
59
  )
60
+ tokenizer = AutoTokenizer.from_pretrained(
61
+ "vpelloin/MEDIA_NLU-flaubert_oral_asr"
62
+ )
63
+ model = AutoModelForTokenClassification.from_pretrained(
64
+ "vpelloin/MEDIA_NLU-flaubert_oral_asr"
65
+ )
66
 
67
  sentences = [
68
  "je voudrais réserver une chambre à paris pour demain et lundi",
 
72
  ]
73
  inputs = tokenizer(sentences, padding=True, return_tensors='pt')
74
  outptus = model(**inputs).logits
75
+ print([
76
+ [model.config.id2label[i] for i in b]
77
+ for b in outptus.argmax(dim=-1).tolist()
78
+ ])
79
  ```
80
 
81
  ## Reference