Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ tags:
|
|
22 |
This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/).
|
23 |
It maps each input words into outputs concepts tags (76 available).
|
24 |
|
25 |
-
This model is trained using [`nherve/flaubert-oral-asr`](https://huggingface.co/nherve/flaubert-oral-asr) as its inital checkpoint. It obtained 12.43% CER (*lower is better*) in the MEDIA test set, in [our Interspeech 2023 publication](http://doi.org/10.21437/Interspeech.2022-352).
|
26 |
|
27 |
## Available MEDIA NLU models:
|
28 |
- [`vpelloin/MEDIA_NLU-flaubert_base_cased`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_base_cased): MEDIA NLU model trained using [`flaubert/flaubert_base_cased`](https://huggingface.co/flaubert/flaubert_base_cased). Obtains 13.20% CER on MEDIA test.
|
|
|
22 |
This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/).
|
23 |
It maps each input words into outputs concepts tags (76 available).
|
24 |
|
25 |
+
This model is trained using [`nherve/flaubert-oral-asr`](https://huggingface.co/nherve/flaubert-oral-asr) as its inital checkpoint. It obtained 12.43% CER (*lower is better*) in the MEDIA test set, in [our Interspeech 2023 publication](http://doi.org/10.21437/Interspeech.2022-352), using Kaldi ASR transcriptions.
|
26 |
|
27 |
## Available MEDIA NLU models:
|
28 |
- [`vpelloin/MEDIA_NLU-flaubert_base_cased`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_base_cased): MEDIA NLU model trained using [`flaubert/flaubert_base_cased`](https://huggingface.co/flaubert/flaubert_base_cased). Obtains 13.20% CER on MEDIA test.
|