tiennguyenbnbk
commited on
Model save
Browse files- README.md +92 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: vinai/phobert-base-v2
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- recall
|
8 |
+
- precision
|
9 |
+
model-index:
|
10 |
+
- name: cls-comment-phobert-base-v2-v2.2
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# cls-comment-phobert-base-v2-v2.2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.3436
|
22 |
+
- Accuracy: 0.9284
|
23 |
+
- F1 Score: 0.8830
|
24 |
+
- Recall: 0.8726
|
25 |
+
- Precision: 0.8977
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 1e-05
|
45 |
+
- train_batch_size: 64
|
46 |
+
- eval_batch_size: 64
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 2
|
49 |
+
- total_train_batch_size: 128
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- training_steps: 4000
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:|
|
59 |
+
| 1.663 | 1.05 | 100 | 1.4870 | 0.5041 | 0.1117 | 0.1667 | 0.0840 |
|
60 |
+
| 1.294 | 2.11 | 200 | 0.9956 | 0.6975 | 0.3911 | 0.3900 | 0.4902 |
|
61 |
+
| 0.898 | 3.16 | 300 | 0.6779 | 0.8232 | 0.5499 | 0.5697 | 0.5354 |
|
62 |
+
| 0.6411 | 4.21 | 400 | 0.5164 | 0.8568 | 0.5740 | 0.5895 | 0.5613 |
|
63 |
+
| 0.5031 | 5.26 | 500 | 0.4106 | 0.8938 | 0.7181 | 0.7114 | 0.7319 |
|
64 |
+
| 0.38 | 6.32 | 600 | 0.3474 | 0.9096 | 0.8326 | 0.8145 | 0.8739 |
|
65 |
+
| 0.2927 | 7.37 | 700 | 0.3110 | 0.9142 | 0.8598 | 0.8455 | 0.8810 |
|
66 |
+
| 0.2532 | 8.42 | 800 | 0.3046 | 0.9188 | 0.8702 | 0.8551 | 0.8881 |
|
67 |
+
| 0.2049 | 9.47 | 900 | 0.2851 | 0.9218 | 0.8689 | 0.8539 | 0.8902 |
|
68 |
+
| 0.1785 | 10.53 | 1000 | 0.2802 | 0.9251 | 0.8769 | 0.8561 | 0.9045 |
|
69 |
+
| 0.1511 | 11.58 | 1100 | 0.2875 | 0.9231 | 0.8744 | 0.8748 | 0.8770 |
|
70 |
+
| 0.1392 | 12.63 | 1200 | 0.2811 | 0.9264 | 0.8775 | 0.8597 | 0.9005 |
|
71 |
+
| 0.1166 | 13.68 | 1300 | 0.2757 | 0.9248 | 0.8751 | 0.8746 | 0.8786 |
|
72 |
+
| 0.1087 | 14.74 | 1400 | 0.2727 | 0.9258 | 0.8804 | 0.8761 | 0.8858 |
|
73 |
+
| 0.0918 | 15.79 | 1500 | 0.2862 | 0.9284 | 0.8830 | 0.8712 | 0.8988 |
|
74 |
+
| 0.0824 | 16.84 | 1600 | 0.2915 | 0.9291 | 0.8833 | 0.8689 | 0.9009 |
|
75 |
+
| 0.0745 | 17.89 | 1700 | 0.2994 | 0.9291 | 0.8797 | 0.8796 | 0.8847 |
|
76 |
+
| 0.0743 | 18.95 | 1800 | 0.3092 | 0.9254 | 0.8783 | 0.8686 | 0.8910 |
|
77 |
+
| 0.0636 | 20.0 | 1900 | 0.3142 | 0.9291 | 0.8811 | 0.8743 | 0.8916 |
|
78 |
+
| 0.0605 | 21.05 | 2000 | 0.3099 | 0.9291 | 0.8823 | 0.8700 | 0.8974 |
|
79 |
+
| 0.0501 | 22.11 | 2100 | 0.3163 | 0.9317 | 0.8875 | 0.8777 | 0.9015 |
|
80 |
+
| 0.0519 | 23.16 | 2200 | 0.3290 | 0.9297 | 0.8837 | 0.8692 | 0.9011 |
|
81 |
+
| 0.0464 | 24.21 | 2300 | 0.3406 | 0.9274 | 0.8805 | 0.8772 | 0.8872 |
|
82 |
+
| 0.0432 | 25.26 | 2400 | 0.3305 | 0.9284 | 0.8810 | 0.8775 | 0.8876 |
|
83 |
+
| 0.0404 | 26.32 | 2500 | 0.3378 | 0.9294 | 0.8826 | 0.8785 | 0.8901 |
|
84 |
+
| 0.0416 | 27.37 | 2600 | 0.3436 | 0.9284 | 0.8830 | 0.8726 | 0.8977 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.38.2
|
90 |
+
- Pytorch 2.2.1+cu121
|
91 |
+
- Datasets 2.18.0
|
92 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 540035688
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f846d037f9f84b5af3e3f939f8b220867d4be83103f7626d88ddadfbefaa2201
|
3 |
size 540035688
|