File size: 5,441 Bytes
d6a34bb 9248399 d6a34bb 9248399 d6a34bb 9248399 d6a34bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
model-index:
- name: cls-comment-phobert-base-v2-v3.2.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cls-comment-phobert-base-v2-v3.2.1
This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4654
- Accuracy: 0.9402
- F1 Score: 0.9310
- Recall: 0.9300
- Precision: 0.9325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4000
- label_smoothing_factor: 0.05
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:|
| 1.8571 | 0.8696 | 100 | 1.6996 | 0.3986 | 0.0814 | 0.1429 | 0.0569 |
| 1.552 | 1.7391 | 200 | 1.2878 | 0.6150 | 0.2552 | 0.2860 | 0.2738 |
| 1.1701 | 2.6087 | 300 | 0.9309 | 0.7746 | 0.5380 | 0.5249 | 0.5797 |
| 0.8958 | 3.4783 | 400 | 0.7468 | 0.8371 | 0.6099 | 0.6121 | 0.6113 |
| 0.7463 | 4.3478 | 500 | 0.6540 | 0.8641 | 0.6758 | 0.6741 | 0.7556 |
| 0.6489 | 5.2174 | 600 | 0.5884 | 0.8866 | 0.7502 | 0.7443 | 0.7611 |
| 0.5604 | 6.0870 | 700 | 0.5297 | 0.9010 | 0.8350 | 0.8196 | 0.9060 |
| 0.4907 | 6.9565 | 800 | 0.4928 | 0.9171 | 0.8962 | 0.8769 | 0.9190 |
| 0.4428 | 7.8261 | 900 | 0.4692 | 0.9220 | 0.9048 | 0.8958 | 0.9170 |
| 0.4086 | 8.6957 | 1000 | 0.4600 | 0.9236 | 0.9073 | 0.9183 | 0.8978 |
| 0.3892 | 9.5652 | 1100 | 0.4530 | 0.9293 | 0.9156 | 0.9159 | 0.9156 |
| 0.3659 | 10.4348 | 1200 | 0.4574 | 0.9258 | 0.9154 | 0.9258 | 0.9071 |
| 0.3577 | 11.3043 | 1300 | 0.4533 | 0.9288 | 0.9159 | 0.9177 | 0.9152 |
| 0.338 | 12.1739 | 1400 | 0.4454 | 0.9339 | 0.9203 | 0.9285 | 0.9128 |
| 0.3302 | 13.0435 | 1500 | 0.4539 | 0.9312 | 0.9179 | 0.9172 | 0.9196 |
| 0.3186 | 13.9130 | 1600 | 0.4533 | 0.9320 | 0.9220 | 0.9146 | 0.9298 |
| 0.3146 | 14.7826 | 1700 | 0.4485 | 0.9356 | 0.9246 | 0.9224 | 0.9281 |
| 0.3093 | 15.6522 | 1800 | 0.4557 | 0.9326 | 0.9194 | 0.9125 | 0.9291 |
| 0.3019 | 16.5217 | 1900 | 0.4684 | 0.9290 | 0.9169 | 0.9234 | 0.9128 |
| 0.2985 | 17.3913 | 2000 | 0.4545 | 0.9347 | 0.9248 | 0.9238 | 0.9259 |
| 0.2959 | 18.2609 | 2100 | 0.4689 | 0.9334 | 0.9220 | 0.9208 | 0.9249 |
| 0.2891 | 19.1304 | 2200 | 0.4558 | 0.9386 | 0.9262 | 0.9180 | 0.9360 |
| 0.2905 | 20.0 | 2300 | 0.4590 | 0.9358 | 0.9227 | 0.9163 | 0.9308 |
| 0.2875 | 20.8696 | 2400 | 0.4797 | 0.9307 | 0.9193 | 0.9146 | 0.9268 |
| 0.2812 | 21.7391 | 2500 | 0.4697 | 0.9356 | 0.9247 | 0.9257 | 0.9242 |
| 0.2789 | 22.6087 | 2600 | 0.4668 | 0.9380 | 0.9255 | 0.9250 | 0.9271 |
| 0.2785 | 23.4783 | 2700 | 0.4671 | 0.9383 | 0.9293 | 0.9301 | 0.9289 |
| 0.2773 | 24.3478 | 2800 | 0.4657 | 0.9391 | 0.9293 | 0.9274 | 0.9328 |
| 0.2814 | 25.2174 | 2900 | 0.4702 | 0.9361 | 0.9259 | 0.9285 | 0.9244 |
| 0.2744 | 26.0870 | 3000 | 0.4732 | 0.9353 | 0.9274 | 0.9290 | 0.9273 |
| 0.2772 | 26.9565 | 3100 | 0.4676 | 0.9388 | 0.9281 | 0.9301 | 0.9264 |
| 0.2736 | 27.8261 | 3200 | 0.4661 | 0.9394 | 0.9281 | 0.9242 | 0.9325 |
| 0.2754 | 28.6957 | 3300 | 0.4746 | 0.9367 | 0.9257 | 0.9233 | 0.9288 |
| 0.2717 | 29.5652 | 3400 | 0.4688 | 0.9380 | 0.9283 | 0.9255 | 0.9315 |
| 0.27 | 30.4348 | 3500 | 0.4697 | 0.9388 | 0.9304 | 0.9307 | 0.9308 |
| 0.2674 | 31.3043 | 3600 | 0.4668 | 0.9391 | 0.9274 | 0.9311 | 0.9240 |
| 0.2693 | 32.1739 | 3700 | 0.4657 | 0.9407 | 0.9319 | 0.9326 | 0.9319 |
| 0.2685 | 33.0435 | 3800 | 0.4672 | 0.9402 | 0.9298 | 0.9304 | 0.9297 |
| 0.268 | 33.9130 | 3900 | 0.4668 | 0.9410 | 0.9317 | 0.9311 | 0.9328 |
| 0.272 | 34.7826 | 4000 | 0.4654 | 0.9402 | 0.9310 | 0.9300 | 0.9325 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|