update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ja
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- vumichien/common_voice_large_jsut_jsss_css10
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-xls-r-1b-ja-dumy8
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# wav2vec2-xls-r-1b-ja-dumy8
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10 - JA dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2104
|
22 |
+
- Wer: 0.1941
|
23 |
+
- Cer: 0.0991
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 64
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_steps: 1000
|
51 |
+
- num_epochs: 100.0
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
58 |
+
| 2.2896 | 3.37 | 1500 | 0.4748 | 0.4013 | 0.1767 |
|
59 |
+
| 1.1608 | 6.74 | 3000 | 0.3350 | 0.3159 | 0.1456 |
|
60 |
+
| 1.1042 | 10.11 | 4500 | 0.3119 | 0.2971 | 0.1400 |
|
61 |
+
| 1.0494 | 13.48 | 6000 | 0.2974 | 0.2867 | 0.1353 |
|
62 |
+
| 1.0061 | 16.85 | 7500 | 0.2802 | 0.2746 | 0.1300 |
|
63 |
+
| 0.9629 | 20.22 | 9000 | 0.2844 | 0.2776 | 0.1326 |
|
64 |
+
| 0.9267 | 23.59 | 10500 | 0.2577 | 0.2603 | 0.1255 |
|
65 |
+
| 0.8984 | 26.96 | 12000 | 0.2508 | 0.2531 | 0.1226 |
|
66 |
+
| 0.8729 | 30.34 | 13500 | 0.2629 | 0.2606 | 0.1254 |
|
67 |
+
| 0.8546 | 33.71 | 15000 | 0.2402 | 0.2447 | 0.1193 |
|
68 |
+
| 0.8304 | 37.08 | 16500 | 0.2532 | 0.2472 | 0.1209 |
|
69 |
+
| 0.8075 | 40.45 | 18000 | 0.2439 | 0.2469 | 0.1198 |
|
70 |
+
| 0.7827 | 43.82 | 19500 | 0.2387 | 0.2372 | 0.1167 |
|
71 |
+
| 0.7627 | 47.19 | 21000 | 0.2344 | 0.2331 | 0.1147 |
|
72 |
+
| 0.7402 | 50.56 | 22500 | 0.2314 | 0.2299 | 0.1135 |
|
73 |
+
| 0.718 | 53.93 | 24000 | 0.2257 | 0.2267 | 0.1114 |
|
74 |
+
| 0.7016 | 57.3 | 25500 | 0.2204 | 0.2184 | 0.1089 |
|
75 |
+
| 0.6804 | 60.67 | 27000 | 0.2227 | 0.2181 | 0.1085 |
|
76 |
+
| 0.6625 | 64.04 | 28500 | 0.2138 | 0.2112 | 0.1058 |
|
77 |
+
| 0.6465 | 67.42 | 30000 | 0.2141 | 0.2081 | 0.1044 |
|
78 |
+
| 0.6238 | 70.79 | 31500 | 0.2172 | 0.2082 | 0.1050 |
|
79 |
+
| 0.6062 | 74.16 | 33000 | 0.2174 | 0.2058 | 0.1043 |
|
80 |
+
| 0.588 | 77.53 | 34500 | 0.2156 | 0.2034 | 0.1027 |
|
81 |
+
| 0.5722 | 80.9 | 36000 | 0.2162 | 0.2032 | 0.1029 |
|
82 |
+
| 0.5585 | 84.27 | 37500 | 0.2156 | 0.2022 | 0.1021 |
|
83 |
+
| 0.5456 | 87.64 | 39000 | 0.2126 | 0.1993 | 0.1009 |
|
84 |
+
| 0.5325 | 91.01 | 40500 | 0.2121 | 0.1966 | 0.1003 |
|
85 |
+
| 0.5229 | 94.38 | 42000 | 0.2104 | 0.1941 | 0.0991 |
|
86 |
+
| 0.5134 | 97.75 | 43500 | 0.2108 | 0.1948 | 0.0992 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.16.0.dev0
|
92 |
+
- Pytorch 1.10.1+cu102
|
93 |
+
- Datasets 1.17.1.dev0
|
94 |
+
- Tokenizers 0.11.0
|