File size: 2,585 Bytes
ffc4d52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e43239
ffc4d52
 
 
 
 
 
 
 
 
2e43239
 
ffc4d52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: facebook/convnextv2-tiny-22k-384
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: cconvnext-tiny-15ep-1e-4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9375
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cconvnext-tiny-15ep-1e-4

This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2767
- Accuracy: 0.9375

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5838        | 1.0   | 550  | 0.4097          | 0.8811   |
| 0.4565        | 2.0   | 1100 | 0.4269          | 0.8763   |
| 0.3628        | 3.0   | 1650 | 0.3464          | 0.9002   |
| 0.2915        | 4.0   | 2200 | 0.3366          | 0.9066   |
| 0.2655        | 5.0   | 2750 | 0.3387          | 0.9054   |
| 0.2395        | 6.0   | 3300 | 0.3313          | 0.9125   |
| 0.2065        | 7.0   | 3850 | 0.3120          | 0.9181   |
| 0.1503        | 8.0   | 4400 | 0.3065          | 0.9221   |
| 0.1503        | 9.0   | 4950 | 0.2948          | 0.9276   |
| 0.1125        | 10.0  | 5500 | 0.2918          | 0.9304   |
| 0.1057        | 11.0  | 6050 | 0.2954          | 0.9328   |
| 0.0937        | 12.0  | 6600 | 0.2959          | 0.9336   |
| 0.0966        | 13.0  | 7150 | 0.2940          | 0.9352   |
| 0.0735        | 14.0  | 7700 | 0.2916          | 0.9340   |
| 0.0881        | 15.0  | 8250 | 0.2902          | 0.9356   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2