Text-to-Image
Diffusers
Safetensors
stable-diffusion
stable-diffusion-diffusers
diffusers-training
lora
vwu142 commited on
Commit
eeb322d
·
verified ·
1 Parent(s): 147a862

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -5
README.md CHANGED
@@ -36,13 +36,57 @@ These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weight
36
  #### How to use
37
 
38
  ```python
39
- # TODO: add an example code snippet for running this diffusion pipeline
40
- ```
 
 
 
41
 
42
- #### Limitations and bias
 
 
 
43
 
44
- [TODO: provide examples of latent issues and potential remediations]
 
 
 
 
 
 
 
 
45
 
46
  ## Training details
47
 
48
- [TODO: describe the data used to train the model]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  #### How to use
37
 
38
  ```python
39
+ # Importing LoRA Weights
40
+ from huggingface_hub import model_info
41
+
42
+ # LoRA weights ~3 MB
43
+ model_path = "vwu142/pokemon-lora"
44
 
45
+ # Getting Base Model
46
+ info = model_info(model_path)
47
+ model_base = info.cardData["base_model"]
48
+ print(model_base)
49
 
50
+ # Importing the Diffusion model with the weights added
51
+ import torch
52
+ from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
53
+
54
+ pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16)
55
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
56
+ pipe.unet.load_attn_procs(model_path)
57
+ pipe.to("cuda")
58
+ ```
59
 
60
  ## Training details
61
 
62
+ The weights were trained on the Free GPU provided in Google Collab.
63
+
64
+ The data it was trained on comes from this dataset:
65
+ https://huggingface.co/datasets/vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000
66
+
67
+ It has images of pokemon cards and pokemon with various descriptions of the image.
68
+
69
+
70
+ This was the parameters and the script used to train the weights
71
+
72
+ '''
73
+ !accelerate launch --mixed_precision="fp16" diffusers/examples/text_to_image/train_text_to_image_lora.py \
74
+ --pretrained_model_name_or_path=$MODEL_NAME \
75
+ --mixed_precision="fp16" \
76
+ --dataset_name=$DATASET_NAME --caption_column="caption"\
77
+ --dataloader_num_workers=8 \
78
+ --resolution=512 --center_crop --random_flip \
79
+ --train_batch_size=1 \
80
+ --gradient_accumulation_steps=4 \
81
+ --max_train_steps=1500 \
82
+ --learning_rate=1e-04 \
83
+ --max_grad_norm=1 \
84
+ --lr_scheduler="cosine" --lr_warmup_steps=0 \
85
+ --output_dir=${OUTPUT_DIR} \
86
+ --push_to_hub \
87
+ --hub_model_id=${HUB_MODEL_ID} \
88
+ --report_to=wandb \
89
+ --checkpointing_steps=500 \
90
+ --validation_prompt="Ludicolo" \
91
+ --seed=1337
92
+ '''