w11wo commited on
Commit
4dfd27b
·
1 Parent(s): 1b27474

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: id
3
+ tags:
4
+ - indonesian-roberta-base-posp-tagger
5
+ license: mit
6
+ datasets:
7
+ - indonlu
8
+ widget:
9
+ - text: "Budi sedang pergi ke pasar."
10
+ ---
11
+
12
+ ## Indonesian RoBERTa Base POSP Tagger
13
+
14
+ Indonesian RoBERTa Base POSP Tagger is a part-of-speech token-classification model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. The model was originally the pre-trained [Indonesian RoBERTa Base](https://hf.co/flax-community/indonesian-roberta-base) model, which is then fine-tuned on [`indonlu`](https://hf.co/datasets/indonlu)'s `POSP` dataset consisting of tag-labelled news.
15
+
16
+ After training, the model achieved an evaluation F1-macro of 95.34%. On the benchmark test set, the model achieved an accuracy of 93.99% and F1-macro of 88.93%.
17
+
18
+ Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless.
19
+
20
+ ## Model
21
+
22
+ | Model | #params | Arch. | Training/Validation data (text) |
23
+ | ------------------------------------- | ------- | ------------ | ------------------------------- |
24
+ | `indonesian-roberta-base-posp-tagger` | 124M | RoBERTa Base | `POSP` |
25
+
26
+ ## Evaluation Results
27
+
28
+ The model was trained for 10 epochs and the best model was loaded at the end.
29
+
30
+ | Epoch | Training Loss | Validation Loss | Precision | Recall | F1 | Accuracy |
31
+ | ----- | ------------- | --------------- | --------- | -------- | -------- | -------- |
32
+ | 1 | 0.898400 | 0.343731 | 0.894324 | 0.894324 | 0.894324 | 0.894324 |
33
+ | 2 | 0.294700 | 0.236619 | 0.929620 | 0.929620 | 0.929620 | 0.929620 |
34
+ | 3 | 0.214100 | 0.202723 | 0.938349 | 0.938349 | 0.938349 | 0.938349 |
35
+ | 4 | 0.171100 | 0.183630 | 0.945264 | 0.945264 | 0.945264 | 0.945264 |
36
+ | 5 | 0.143300 | 0.169744 | 0.948469 | 0.948469 | 0.948469 | 0.948469 |
37
+ | 6 | 0.124700 | 0.174946 | 0.947963 | 0.947963 | 0.947963 | 0.947963 |
38
+ | 7 | 0.109800 | 0.167450 | 0.951590 | 0.951590 | 0.951590 | 0.951590 |
39
+ | 8 | 0.101300 | 0.163191 | 0.952475 | 0.952475 | 0.952475 | 0.952475 |
40
+ | 9 | 0.093500 | 0.163255 | 0.953361 | 0.953361 | 0.953361 | 0.953361 |
41
+ | 10 | 0.089000 | 0.164673 | 0.953445 | 0.953445 | 0.953445 | 0.953445 |
42
+
43
+ ## How to Use
44
+
45
+ ### As Token Classifier
46
+
47
+ ```python
48
+ from transformers import pipeline
49
+
50
+ pretrained_name = "w11wo/indonesian-roberta-base-posp-tagger"
51
+
52
+ nlp = pipeline(
53
+ "token-classification",
54
+ model=pretrained_name,
55
+ tokenizer=pretrained_name
56
+ )
57
+
58
+ nlp("Budi sedang pergi ke pasar.")
59
+ ```
60
+
61
+ ## Disclaimer
62
+
63
+ Do consider the biases which come from both the pre-trained RoBERTa model and the `POSP` dataset that may be carried over into the results of this model.
64
+
65
+ ## Author
66
+
67
+ Indonesian RoBERTa Base POSP Tagger was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.