wa976 commited on
Commit
5472310
·
1 Parent(s): 5817d38

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: ast-finetuned-ICBHI
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ast-finetuned-ICBHI
16
+
17
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.0818
20
+ - Accuracy: 0.7087
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 4
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 16
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 5
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 1.0435 | 1.0 | 345 | 0.9654 | 0.6232 |
55
+ | 0.8307 | 2.0 | 690 | 0.8455 | 0.6783 |
56
+ | 0.5268 | 3.0 | 1035 | 0.8861 | 0.6928 |
57
+ | 0.2818 | 4.0 | 1380 | 1.0818 | 0.7087 |
58
+ | 0.0353 | 5.0 | 1725 | 1.3766 | 0.7029 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.30.0.dev0
64
+ - Pytorch 2.0.0+cu118
65
+ - Datasets 2.12.0
66
+ - Tokenizers 0.13.3