wa976 commited on
Commit
98cc21c
·
1 Parent(s): e5cddd0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: ast_18-finetuned-ICBHI
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ast_18-finetuned-ICBHI
16
+
17
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.0867
20
+ - Accuracy: 0.5757
21
+ - Sensitivity: 0.1164
22
+ - Specificity: 0.9183
23
+ - Score: 0.5173
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 3e-05
43
+ - train_batch_size: 32
44
+ - eval_batch_size: 32
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 128
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
57
+ | 1.5436 | 0.98 | 32 | 1.4656 | 0.1684 | 0.3127 | 0.0608 | 0.1867 |
58
+ | 1.2922 | 2.0 | 65 | 1.2055 | 0.4530 | 0.1121 | 0.7072 | 0.4097 |
59
+ | 1.2213 | 2.98 | 97 | 1.1364 | 0.5387 | 0.0450 | 0.9068 | 0.4759 |
60
+ | 1.149 | 4.0 | 130 | 1.1176 | 0.5543 | 0.0731 | 0.9132 | 0.4931 |
61
+ | 1.1558 | 4.98 | 162 | 1.1035 | 0.5630 | 0.0705 | 0.9303 | 0.5004 |
62
+ | 1.1363 | 6.0 | 195 | 1.1006 | 0.5655 | 0.1020 | 0.9113 | 0.5066 |
63
+ | 1.1138 | 6.98 | 227 | 1.0938 | 0.5699 | 0.1121 | 0.9113 | 0.5117 |
64
+ | 1.0807 | 8.0 | 260 | 1.0897 | 0.5742 | 0.1147 | 0.9170 | 0.5158 |
65
+ | 1.1071 | 8.98 | 292 | 1.0867 | 0.5757 | 0.1138 | 0.9202 | 0.5170 |
66
+ | 1.1017 | 9.85 | 320 | 1.0867 | 0.5757 | 0.1164 | 0.9183 | 0.5173 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.29.2
72
+ - Pytorch 2.0.1+cu118
73
+ - Datasets 2.12.0
74
+ - Tokenizers 0.13.3