File size: 2,252 Bytes
d191743 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ast_binary_7-finetuned-ICBHI
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ast_binary_7-finetuned-ICBHI
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7561
- Accuracy: 0.5764
- Sensitivity: 0.6185
- Specificity: 0.5450
- Score: 0.5818
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
| 0.6321 | 1.0 | 259 | 0.7561 | 0.5764 | 0.6185 | 0.5450 | 0.5818 |
| 0.5672 | 2.0 | 518 | 0.8579 | 0.5626 | 0.6015 | 0.5336 | 0.5676 |
| 0.5443 | 3.0 | 777 | 1.0517 | 0.5074 | 0.8275 | 0.2687 | 0.5481 |
| 0.5075 | 4.0 | 1036 | 0.9977 | 0.5358 | 0.7638 | 0.3657 | 0.5647 |
| 0.4912 | 5.0 | 1295 | 1.2474 | 0.4969 | 0.8539 | 0.2307 | 0.5423 |
| 0.4331 | 6.0 | 1554 | 1.0732 | 0.5376 | 0.7077 | 0.4106 | 0.5592 |
| 0.4368 | 7.0 | 1813 | 1.0947 | 0.5405 | 0.7230 | 0.4043 | 0.5637 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|