File size: 14,928 Bytes
bbde80b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import numpy as np
import os
import cv2
import math
import copy
import imageio
import io
from tqdm import tqdm
from PIL import Image
from lib.utils.tools import ensure_dir
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from lib.utils.utils_smpl import *
import ipdb
def render_and_save(motion_input, save_path, keep_imgs=False, fps=25, color="#F96706#FB8D43#FDB381", with_conf=False, draw_face=False):
ensure_dir(os.path.dirname(save_path))
motion = copy.deepcopy(motion_input)
if motion.shape[-1]==2 or motion.shape[-1]==3:
motion = np.transpose(motion, (1,2,0)) #(T,17,D) -> (17,D,T)
if motion.shape[1]==2 or with_conf:
colors = hex2rgb(color)
if not with_conf:
J, D, T = motion.shape
motion_full = np.ones([J,3,T])
motion_full[:,:2,:] = motion
else:
motion_full = motion
motion_full[:,:2,:] = pixel2world_vis_motion(motion_full[:,:2,:])
motion2video(motion_full, save_path=save_path, colors=colors, fps=fps)
elif motion.shape[0]==6890:
# motion_world = pixel2world_vis_motion(motion, dim=3)
motion2video_mesh(motion, save_path=save_path, keep_imgs=keep_imgs, fps=fps, draw_face=draw_face)
else:
motion_world = pixel2world_vis_motion(motion, dim=3)
motion2video_3d(motion_world, save_path=save_path, keep_imgs=keep_imgs, fps=fps)
def pixel2world_vis(pose):
# pose: (17,2)
return (pose + [1, 1]) * 512 / 2
def pixel2world_vis_motion(motion, dim=2, is_tensor=False):
# pose: (17,2,N)
N = motion.shape[-1]
if dim==2:
offset = np.ones([2,N]).astype(np.float32)
else:
offset = np.ones([3,N]).astype(np.float32)
offset[2,:] = 0
if is_tensor:
offset = torch.tensor(offset)
return (motion + offset) * 512 / 2
def vis_data_batch(data_input, data_label, n_render=10, save_path='doodle/vis_train_data/'):
'''
data_input: [N,T,17,2/3]
data_label: [N,T,17,3]
'''
pathlib.Path(save_path).mkdir(parents=True, exist_ok=True)
for i in range(min(len(data_input), n_render)):
render_and_save(data_input[i][:,:,:2], '%s/input_%d.mp4' % (save_path, i))
render_and_save(data_label[i], '%s/gt_%d.mp4' % (save_path, i))
def get_img_from_fig(fig, dpi=120):
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=dpi, bbox_inches="tight", pad_inches=0)
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
return img
def rgb2rgba(color):
return (color[0], color[1], color[2], 255)
def hex2rgb(hex, number_of_colors=3):
h = hex
rgb = []
for i in range(number_of_colors):
h = h.lstrip('#')
hex_color = h[0:6]
rgb_color = [int(hex_color[i:i+2], 16) for i in (0, 2 ,4)]
rgb.append(rgb_color)
h = h[6:]
return rgb
def joints2image(joints_position, colors, transparency=False, H=1000, W=1000, nr_joints=49, imtype=np.uint8, grayscale=False, bg_color=(255, 255, 255)):
# joints_position: [17*2]
nr_joints = joints_position.shape[0]
if nr_joints == 49: # full joints(49): basic(15) + eyes(2) + toes(2) + hands(30)
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7], \
[8, 9], [8, 13], [9, 10], [10, 11], [11, 12], [13, 14], [14, 15], [15, 16],
]#[0, 17], [0, 18]] #ignore eyes
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, L, R, R, R,
R, R, L] + [L] * 15 + [R] * 15
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, L, R, R, R,
R, R]
elif nr_joints == 15: # basic joints(15) + (eyes(2))
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7],
[8, 9], [8, 12], [9, 10], [10, 11], [12, 13], [13, 14]]
# [0, 15], [0, 16] two eyes are not drawn
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, R, R, R]
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, R, R]
elif nr_joints == 17: # H36M, 0: 'root',
# 1: 'rhip',
# 2: 'rkne',
# 3: 'rank',
# 4: 'lhip',
# 5: 'lkne',
# 6: 'lank',
# 7: 'belly',
# 8: 'neck',
# 9: 'nose',
# 10: 'head',
# 11: 'lsho',
# 12: 'lelb',
# 13: 'lwri',
# 14: 'rsho',
# 15: 'relb',
# 16: 'rwri'
limbSeq = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [8, 11], [8, 14], [9, 10], [11, 12], [12, 13], [14, 15], [15, 16]]
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, R, R, R, L, L, L, M, M, M, M, L, L, L, R, R, R]
colors_limbs = [R, R, R, L, L, L, M, M, M, L, R, M, L, L, R, R]
else:
raise ValueError("Only support number of joints be 49 or 17 or 15")
if transparency:
canvas = np.zeros(shape=(H, W, 4))
else:
canvas = np.ones(shape=(H, W, 3)) * np.array(bg_color).reshape([1, 1, 3])
hips = joints_position[0]
neck = joints_position[8]
torso_length = ((hips[1] - neck[1]) ** 2 + (hips[0] - neck[0]) ** 2) ** 0.5
head_radius = int(torso_length/4.5)
end_effectors_radius = int(torso_length/15)
end_effectors_radius = 7
joints_radius = 7
for i in range(0, len(colors_joints)):
if i in (17, 18):
continue
elif i > 18:
radius = 2
else:
radius = joints_radius
if len(joints_position[i])==3: # If there is confidence, weigh by confidence
weight = joints_position[i][2]
if weight==0:
continue
cv2.circle(canvas, (int(joints_position[i][0]),int(joints_position[i][1])), radius, colors_joints[i], thickness=-1)
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
point1 = joints_position[point1_index]
point2 = joints_position[point2_index]
if len(point1)==3: # If there is confidence, weigh by confidence
limb_weight = min(point1[2], point2[2])
if limb_weight==0:
bb = bounding_box(canvas)
canvas_cropped = canvas[:,bb[2]:bb[3], :]
continue
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(alpha), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors_limbs[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
bb = bounding_box(canvas)
canvas_cropped = canvas[:,bb[2]:bb[3], :]
canvas = canvas.astype(imtype)
canvas_cropped = canvas_cropped.astype(imtype)
if grayscale:
if transparency:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGBA2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGBA2GRAY)
else:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGB2GRAY)
return [canvas, canvas_cropped]
def motion2video(motion, save_path, colors, h=512, w=512, bg_color=(255, 255, 255), transparency=False, motion_tgt=None, fps=25, save_frame=False, grayscale=False, show_progress=True, as_array=False):
nr_joints = motion.shape[0]
# as_array = save_path.endswith(".npy")
vlen = motion.shape[-1]
out_array = np.zeros([vlen, h, w, 3]) if as_array else None
videowriter = None if as_array else imageio.get_writer(save_path, fps=fps)
if save_frame:
frames_dir = save_path[:-4] + '-frames'
ensure_dir(frames_dir)
iterator = range(vlen)
if show_progress: iterator = tqdm(iterator)
for i in iterator:
[img, img_cropped] = joints2image(motion[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale)
if motion_tgt is not None:
[img_tgt, img_tgt_cropped] = joints2image(motion_tgt[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale)
img_ori = img.copy()
img = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
img_cropped = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
bb = bounding_box(img_cropped)
img_cropped = img_cropped[:, bb[2]:bb[3], :]
if save_frame:
save_image(img_cropped, os.path.join(frames_dir, "%04d.png" % i))
if as_array: out_array[i] = img
else: videowriter.append_data(img)
if not as_array:
videowriter.close()
return out_array
def motion2video_3d(motion, save_path, fps=25, keep_imgs = False):
# motion: (17,3,N)
videowriter = imageio.get_writer(save_path, fps=fps)
vlen = motion.shape[-1]
save_name = save_path.split('.')[0]
frames = []
joint_pairs = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [8, 11], [8, 14], [9, 10], [11, 12], [12, 13], [14, 15], [15, 16]]
joint_pairs_left = [[8, 11], [11, 12], [12, 13], [0, 4], [4, 5], [5, 6]]
joint_pairs_right = [[8, 14], [14, 15], [15, 16], [0, 1], [1, 2], [2, 3]]
color_mid = "#00457E"
color_left = "#02315E"
color_right = "#2F70AF"
for f in tqdm(range(vlen)):
j3d = motion[:,:,f]
fig = plt.figure(0, figsize=(10, 10))
ax = plt.axes(projection="3d")
ax.set_xlim(-512, 0)
ax.set_ylim(-256, 256)
ax.set_zlim(-512, 0)
# ax.set_xlabel('X')
# ax.set_ylabel('Y')
# ax.set_zlabel('Z')
ax.view_init(elev=12., azim=80)
plt.tick_params(left = False, right = False , labelleft = False ,
labelbottom = False, bottom = False)
for i in range(len(joint_pairs)):
limb = joint_pairs[i]
xs, ys, zs = [np.array([j3d[limb[0], j], j3d[limb[1], j]]) for j in range(3)]
if joint_pairs[i] in joint_pairs_left:
ax.plot(-xs, -zs, -ys, color=color_left, lw=3, marker='o', markerfacecolor='w', markersize=3, markeredgewidth=2) # axis transformation for visualization
elif joint_pairs[i] in joint_pairs_right:
ax.plot(-xs, -zs, -ys, color=color_right, lw=3, marker='o', markerfacecolor='w', markersize=3, markeredgewidth=2) # axis transformation for visualization
else:
ax.plot(-xs, -zs, -ys, color=color_mid, lw=3, marker='o', markerfacecolor='w', markersize=3, markeredgewidth=2) # axis transformation for visualization
frame_vis = get_img_from_fig(fig)
videowriter.append_data(frame_vis)
videowriter.close()
def motion2video_mesh(motion, save_path, fps=25, keep_imgs = False, draw_face=True):
videowriter = imageio.get_writer(save_path, fps=fps)
vlen = motion.shape[-1]
draw_skele = (motion.shape[0]==17)
save_name = save_path.split('.')[0]
smpl_faces = get_smpl_faces()
frames = []
joint_pairs = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [8, 11], [8, 14], [9, 10], [11, 12], [12, 13], [14, 15], [15, 16]]
X, Y, Z = motion[:, 0], motion[:, 1], motion[:, 2]
max_range = np.array([X.max()-X.min(), Y.max()-Y.min(), Z.max()-Z.min()]).max() / 2.0
mid_x = (X.max()+X.min()) * 0.5
mid_y = (Y.max()+Y.min()) * 0.5
mid_z = (Z.max()+Z.min()) * 0.5
for f in tqdm(range(vlen)):
j3d = motion[:,:,f]
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
fig = plt.figure(0, figsize=(8, 8))
ax = plt.axes(projection="3d", proj_type = 'ortho')
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
ax.view_init(elev=-90, azim=-90)
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.axis('off')
plt.xticks([])
plt.yticks([])
# plt.savefig("filename.png", transparent=True, bbox_inches="tight", pad_inches=0)
if draw_skele:
for i in range(len(joint_pairs)):
limb = joint_pairs[i]
xs, ys, zs = [np.array([j3d[limb[0], j], j3d[limb[1], j]]) for j in range(3)]
ax.plot(-xs, -zs, -ys, c=[0,0,0], lw=3, marker='o', markerfacecolor='w', markersize=3, markeredgewidth=2) # axis transformation for visualization
elif draw_face:
ax.plot_trisurf(j3d[:, 0], j3d[:, 1], triangles=smpl_faces, Z=j3d[:, 2], color=(166/255.0,188/255.0,218/255.0,0.9))
else:
ax.scatter(j3d[:, 0], j3d[:, 1], j3d[:, 2], s=3, c='w', edgecolors='grey')
frame_vis = get_img_from_fig(fig, dpi=128)
plt.cla()
videowriter.append_data(frame_vis)
videowriter.close()
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def bounding_box(img):
a = np.where(img != 0)
bbox = np.min(a[0]), np.max(a[0]), np.min(a[1]), np.max(a[1])
return bbox
|