|
import torch |
|
import numpy as np |
|
from torch.nn import functional as F |
|
import copy |
|
|
|
|
|
|
|
def batch_rodrigues(axisang): |
|
|
|
|
|
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) |
|
angle = torch.unsqueeze(axisang_norm, -1) |
|
axisang_normalized = torch.div(axisang, angle) |
|
angle = angle * 0.5 |
|
v_cos = torch.cos(angle) |
|
v_sin = torch.sin(angle) |
|
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) |
|
rot_mat = quat2mat(quat) |
|
rot_mat = rot_mat.view(rot_mat.shape[0], 9) |
|
return rot_mat |
|
|
|
|
|
def quat2mat(quat): |
|
""" |
|
This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50 |
|
|
|
Convert quaternion coefficients to rotation matrix. |
|
Args: |
|
quat: size = [batch_size, 4] 4 <===>(w, x, y, z) |
|
Returns: |
|
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] |
|
""" |
|
norm_quat = quat |
|
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) |
|
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, |
|
2], norm_quat[:, |
|
3] |
|
|
|
batch_size = quat.size(0) |
|
|
|
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) |
|
wx, wy, wz = w * x, w * y, w * z |
|
xy, xz, yz = x * y, x * z, y * z |
|
|
|
rotMat = torch.stack([ |
|
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, |
|
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, |
|
w2 - x2 - y2 + z2 |
|
], |
|
dim=1).view(batch_size, 3, 3) |
|
return rotMat |
|
|
|
|
|
def rotation_matrix_to_angle_axis(rotation_matrix): |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert 3x4 rotation matrix to Rodrigues vector |
|
|
|
Args: |
|
rotation_matrix (Tensor): rotation matrix. |
|
|
|
Returns: |
|
Tensor: Rodrigues vector transformation. |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 3)` |
|
|
|
Example: |
|
>>> input = torch.rand(2, 3, 4) # Nx4x4 |
|
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 |
|
""" |
|
if rotation_matrix.shape[1:] == (3,3): |
|
rot_mat = rotation_matrix.reshape(-1, 3, 3) |
|
hom = torch.tensor([0, 0, 1], dtype=torch.float32, |
|
device=rotation_matrix.device).reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) |
|
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) |
|
|
|
quaternion = rotation_matrix_to_quaternion(rotation_matrix) |
|
aa = quaternion_to_angle_axis(quaternion) |
|
aa[torch.isnan(aa)] = 0.0 |
|
return aa |
|
|
|
|
|
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert quaternion vector to angle axis of rotation. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
quaternion (torch.Tensor): tensor with quaternions. |
|
|
|
Return: |
|
torch.Tensor: tensor with angle axis of rotation. |
|
|
|
Shape: |
|
- Input: :math:`(*, 4)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 3)` |
|
|
|
Example: |
|
>>> quaternion = torch.rand(2, 4) # Nx4 |
|
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 |
|
""" |
|
if not torch.is_tensor(quaternion): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(quaternion))) |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}" |
|
.format(quaternion.shape)) |
|
|
|
q1: torch.Tensor = quaternion[..., 1] |
|
q2: torch.Tensor = quaternion[..., 2] |
|
q3: torch.Tensor = quaternion[..., 3] |
|
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) |
|
cos_theta: torch.Tensor = quaternion[..., 0] |
|
two_theta: torch.Tensor = 2.0 * torch.where( |
|
cos_theta < 0.0, |
|
torch.atan2(-sin_theta, -cos_theta), |
|
torch.atan2(sin_theta, cos_theta)) |
|
|
|
k_pos: torch.Tensor = two_theta / sin_theta |
|
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) |
|
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] |
|
angle_axis[..., 0] += q1 * k |
|
angle_axis[..., 1] += q2 * k |
|
angle_axis[..., 2] += q3 * k |
|
return angle_axis |
|
|
|
|
|
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert 3x4 rotation matrix to 4d quaternion vector |
|
|
|
This algorithm is based on algorithm described in |
|
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 |
|
|
|
Args: |
|
rotation_matrix (Tensor): the rotation matrix to convert. |
|
|
|
Return: |
|
Tensor: the rotation in quaternion |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 4)` |
|
|
|
Example: |
|
>>> input = torch.rand(4, 3, 4) # Nx3x4 |
|
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 |
|
""" |
|
if not torch.is_tensor(rotation_matrix): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(rotation_matrix))) |
|
|
|
if len(rotation_matrix.shape) > 3: |
|
raise ValueError( |
|
"Input size must be a three dimensional tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
if not rotation_matrix.shape[-2:] == (3, 4): |
|
raise ValueError( |
|
"Input size must be a N x 3 x 4 tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
|
|
rmat_t = torch.transpose(rotation_matrix, 1, 2) |
|
|
|
mask_d2 = rmat_t[:, 2, 2] < eps |
|
|
|
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] |
|
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] |
|
|
|
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1) |
|
t0_rep = t0.repeat(4, 1).t() |
|
|
|
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], |
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1) |
|
t1_rep = t1.repeat(4, 1).t() |
|
|
|
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], |
|
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1) |
|
t2_rep = t2.repeat(4, 1).t() |
|
|
|
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], |
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1) |
|
t3_rep = t3.repeat(4, 1).t() |
|
|
|
mask_c0 = mask_d2 * mask_d0_d1 |
|
mask_c1 = mask_d2 * ~mask_d0_d1 |
|
mask_c2 = ~mask_d2 * mask_d0_nd1 |
|
mask_c3 = ~mask_d2 * ~mask_d0_nd1 |
|
mask_c0 = mask_c0.view(-1, 1).type_as(q0) |
|
mask_c1 = mask_c1.view(-1, 1).type_as(q1) |
|
mask_c2 = mask_c2.view(-1, 1).type_as(q2) |
|
mask_c3 = mask_c3.view(-1, 1).type_as(q3) |
|
|
|
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 |
|
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + |
|
t2_rep * mask_c2 + t3_rep * mask_c3) |
|
q *= 0.5 |
|
return q |
|
|
|
|
|
def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000., img_size=224.): |
|
""" |
|
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py |
|
|
|
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. |
|
Input: |
|
S: (25, 3) 3D joint locations |
|
joints: (25, 3) 2D joint locations and confidence |
|
Returns: |
|
(3,) camera translation vector |
|
""" |
|
|
|
num_joints = S.shape[0] |
|
|
|
f = np.array([focal_length,focal_length]) |
|
|
|
center = np.array([img_size/2., img_size/2.]) |
|
|
|
|
|
Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1) |
|
XY = np.reshape(S[:,0:2],-1) |
|
O = np.tile(center,num_joints) |
|
F = np.tile(f,num_joints) |
|
weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1) |
|
|
|
|
|
Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T |
|
c = (np.reshape(joints_2d,-1)-O)*Z - F*XY |
|
|
|
|
|
W = np.diagflat(weight2) |
|
Q = np.dot(W,Q) |
|
c = np.dot(W,c) |
|
|
|
|
|
A = np.dot(Q.T,Q) |
|
b = np.dot(Q.T,c) |
|
|
|
|
|
trans = np.linalg.solve(A, b) |
|
|
|
return trans |
|
|
|
|
|
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): |
|
""" |
|
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py |
|
|
|
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. |
|
Input: |
|
S: (B, 49, 3) 3D joint locations |
|
joints: (B, 49, 3) 2D joint locations and confidence |
|
Returns: |
|
(B, 3) camera translation vectors |
|
""" |
|
|
|
device = S.device |
|
|
|
S = S[:, 25:, :].cpu().numpy() |
|
joints_2d = joints_2d[:, 25:, :].cpu().numpy() |
|
joints_conf = joints_2d[:, :, -1] |
|
joints_2d = joints_2d[:, :, :-1] |
|
trans = np.zeros((S.shape[0], 3), dtype=np.float32) |
|
|
|
for i in range(S.shape[0]): |
|
S_i = S[i] |
|
joints_i = joints_2d[i] |
|
conf_i = joints_conf[i] |
|
trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size) |
|
return torch.from_numpy(trans).to(device) |
|
|
|
|
|
def rot6d_to_rotmat_spin(x): |
|
"""Convert 6D rotation representation to 3x3 rotation matrix. |
|
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 |
|
Input: |
|
(B,6) Batch of 6-D rotation representations |
|
Output: |
|
(B,3,3) Batch of corresponding rotation matrices |
|
""" |
|
x = x.view(-1,3,2) |
|
a1 = x[:, :, 0] |
|
a2 = x[:, :, 1] |
|
b1 = F.normalize(a1) |
|
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) |
|
|
|
|
|
|
|
|
|
|
|
b3 = torch.cross(b1, b2) |
|
return torch.stack((b1, b2, b3), dim=-1) |
|
|
|
|
|
def rot6d_to_rotmat(x): |
|
x = x.view(-1,3,2) |
|
|
|
|
|
b1 = F.normalize(x[:, :, 0], dim=1, eps=1e-6) |
|
|
|
dot_prod = torch.sum(b1 * x[:, :, 1], dim=1, keepdim=True) |
|
|
|
b2 = F.normalize(x[:, :, 1] - dot_prod * b1, dim=-1, eps=1e-6) |
|
|
|
|
|
b3 = torch.cross(b1, b2, dim=1) |
|
rot_mats = torch.stack([b1, b2, b3], dim=-1) |
|
|
|
return rot_mats |
|
|
|
|
|
def rigid_transform_3D(A, B): |
|
n, dim = A.shape |
|
centroid_A = np.mean(A, axis = 0) |
|
centroid_B = np.mean(B, axis = 0) |
|
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n |
|
U, s, V = np.linalg.svd(H) |
|
R = np.dot(np.transpose(V), np.transpose(U)) |
|
if np.linalg.det(R) < 0: |
|
s[-1] = -s[-1] |
|
V[2] = -V[2] |
|
R = np.dot(np.transpose(V), np.transpose(U)) |
|
|
|
varP = np.var(A, axis=0).sum() |
|
c = 1/varP * np.sum(s) |
|
|
|
t = -np.dot(c*R, np.transpose(centroid_A)) + np.transpose(centroid_B) |
|
return c, R, t |
|
|
|
|
|
def rigid_align(A, B): |
|
c, R, t = rigid_transform_3D(A, B) |
|
A2 = np.transpose(np.dot(c*R, np.transpose(A))) + t |
|
return A2 |
|
|
|
def compute_error(output, target): |
|
with torch.no_grad(): |
|
pred_verts = output[0]['verts'].reshape(-1, 6890, 3) |
|
target_verts = target['verts'].reshape(-1, 6890, 3) |
|
|
|
pred_j3ds = output[0]['kp_3d'].reshape(-1, 17, 3) |
|
target_j3ds = target['kp_3d'].reshape(-1, 17, 3) |
|
|
|
|
|
pred_verts = pred_verts - pred_j3ds[:, :1, :] |
|
target_verts = target_verts - target_j3ds[:, :1, :] |
|
mpves = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).cpu() |
|
|
|
|
|
pred_j3ds = pred_j3ds - pred_j3ds[:, :1, :] |
|
target_j3ds = target_j3ds - target_j3ds[:, :1, :] |
|
mpjpes = torch.sqrt(((pred_j3ds - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu() |
|
return mpjpes.mean(), mpves.mean() |
|
|
|
def compute_error_frames(output, target): |
|
with torch.no_grad(): |
|
pred_verts = output[0]['verts'].reshape(-1, 6890, 3) |
|
target_verts = target['verts'].reshape(-1, 6890, 3) |
|
|
|
pred_j3ds = output[0]['kp_3d'].reshape(-1, 17, 3) |
|
target_j3ds = target['kp_3d'].reshape(-1, 17, 3) |
|
|
|
|
|
pred_verts = pred_verts - pred_j3ds[:, :1, :] |
|
target_verts = target_verts - target_j3ds[:, :1, :] |
|
mpves = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).cpu() |
|
|
|
|
|
pred_j3ds = pred_j3ds - pred_j3ds[:, :1, :] |
|
target_j3ds = target_j3ds - target_j3ds[:, :1, :] |
|
mpjpes = torch.sqrt(((pred_j3ds - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu() |
|
return mpjpes, mpves |
|
|
|
def evaluate_mesh(results): |
|
pred_verts = results['verts'].reshape(-1, 6890, 3) |
|
target_verts = results['verts_gt'].reshape(-1, 6890, 3) |
|
|
|
pred_j3ds = results['kp_3d'].reshape(-1, 17, 3) |
|
target_j3ds = results['kp_3d_gt'].reshape(-1, 17, 3) |
|
num_samples = pred_j3ds.shape[0] |
|
|
|
|
|
pred_verts = pred_verts - pred_j3ds[:, :1, :] |
|
target_verts = target_verts - target_j3ds[:, :1, :] |
|
mpve = np.mean(np.mean(np.sqrt(np.square(pred_verts - target_verts).sum(axis=2)), axis=1)) |
|
|
|
|
|
|
|
h36m_17_to_14 = (1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16) |
|
pred_j3ds_17j = (pred_j3ds - pred_j3ds[:, :1, :]) |
|
target_j3ds_17j = (target_j3ds - target_j3ds[:, :1, :]) |
|
|
|
pred_j3ds = pred_j3ds_17j[:, h36m_17_to_14, :].copy() |
|
target_j3ds = target_j3ds_17j[:, h36m_17_to_14, :].copy() |
|
|
|
mpjpe = np.mean(np.sqrt(np.square(pred_j3ds - target_j3ds).sum(axis=2)), axis=1) |
|
mpjpe_17j = np.mean(np.sqrt(np.square(pred_j3ds_17j - target_j3ds_17j).sum(axis=2)), axis=1) |
|
|
|
pred_j3ds_pa, pred_j3ds_pa_17j = [], [] |
|
for n in range(num_samples): |
|
pred_j3ds_pa.append(rigid_align(pred_j3ds[n], target_j3ds[n])) |
|
pred_j3ds_pa_17j.append(rigid_align(pred_j3ds_17j[n], target_j3ds_17j[n])) |
|
pred_j3ds_pa = np.array(pred_j3ds_pa) |
|
pred_j3ds_pa_17j = np.array(pred_j3ds_pa_17j) |
|
|
|
pa_mpjpe = np.mean(np.sqrt(np.square(pred_j3ds_pa - target_j3ds).sum(axis=2)), axis=1) |
|
pa_mpjpe_17j = np.mean(np.sqrt(np.square(pred_j3ds_pa_17j - target_j3ds_17j).sum(axis=2)), axis=1) |
|
|
|
|
|
error_dict = { |
|
'mpve': mpve.mean(), |
|
'mpjpe': mpjpe.mean(), |
|
'pa_mpjpe': pa_mpjpe.mean(), |
|
'mpjpe_17j': mpjpe_17j.mean(), |
|
'pa_mpjpe_17j': pa_mpjpe_17j.mean(), |
|
} |
|
return error_dict |
|
|
|
|
|
def rectify_pose(pose): |
|
""" |
|
Rectify "upside down" people in global coord |
|
|
|
Args: |
|
pose (72,): Pose. |
|
|
|
Returns: |
|
Rotated pose. |
|
""" |
|
pose = pose.copy() |
|
R_mod = cv2.Rodrigues(np.array([np.pi, 0, 0]))[0] |
|
R_root = cv2.Rodrigues(pose[:3])[0] |
|
new_root = R_root.dot(R_mod) |
|
pose[:3] = cv2.Rodrigues(new_root)[0].reshape(3) |
|
return pose |
|
|
|
def flip_thetas(thetas): |
|
"""Flip thetas. |
|
|
|
Parameters |
|
---------- |
|
thetas : numpy.ndarray |
|
Joints in shape (F, num_thetas, 3) |
|
theta_pairs : list |
|
List of theta pairs. |
|
|
|
Returns |
|
------- |
|
numpy.ndarray |
|
Flipped thetas with shape (F, num_thetas, 3) |
|
|
|
""" |
|
|
|
theta_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23)) |
|
thetas_flip = thetas.copy() |
|
|
|
thetas_flip[:, :, 1] = -1 * thetas_flip[:, :, 1] |
|
thetas_flip[:, :, 2] = -1 * thetas_flip[:, :, 2] |
|
|
|
for pair in theta_pairs: |
|
thetas_flip[:, pair[0], :], thetas_flip[:, pair[1], :] = \ |
|
thetas_flip[:, pair[1], :], thetas_flip[:, pair[0], :].copy() |
|
return thetas_flip |
|
|
|
def flip_thetas_batch(thetas): |
|
"""Flip thetas in batch. |
|
|
|
Parameters |
|
---------- |
|
thetas : numpy.array |
|
Joints in shape (N, F, num_thetas*3) |
|
theta_pairs : list |
|
List of theta pairs. |
|
|
|
Returns |
|
------- |
|
numpy.array |
|
Flipped thetas with shape (N, F, num_thetas*3) |
|
|
|
""" |
|
|
|
theta_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23)) |
|
thetas_flip = copy.deepcopy(thetas).reshape(*thetas.shape[:2], 24, 3) |
|
|
|
thetas_flip[:, :, :, 1] = -1 * thetas_flip[:, :, :, 1] |
|
thetas_flip[:, :, :, 2] = -1 * thetas_flip[:, :, :, 2] |
|
|
|
for pair in theta_pairs: |
|
thetas_flip[:, :, pair[0], :], thetas_flip[:, :, pair[1], :] = \ |
|
thetas_flip[:, :, pair[1], :], thetas_flip[:, :, pair[0], :].clone() |
|
|
|
return thetas_flip.reshape(*thetas.shape[:2], -1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|