MotionBERT / lib /utils /utils_mesh.py
walterzhu's picture
Upload 58 files
bbde80b
import torch
import numpy as np
from torch.nn import functional as F
import copy
# from lib.utils.rotation_conversions import axis_angle_to_matrix, matrix_to_rotation_6d
def batch_rodrigues(axisang):
# This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L37
# axisang N x 3
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(axisang_norm, -1)
axisang_normalized = torch.div(axisang, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1)
rot_mat = quat2mat(quat)
rot_mat = rot_mat.view(rot_mat.shape[0], 9)
return rot_mat
def quat2mat(quat):
"""
This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50
Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [batch_size, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:,
2], norm_quat[:,
3]
batch_size = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy,
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz,
w2 - x2 - y2 + z2
],
dim=1).view(batch_size, 3, 3)
return rotMat
def rotation_matrix_to_angle_axis(rotation_matrix):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to Rodrigues vector
Args:
rotation_matrix (Tensor): rotation matrix.
Returns:
Tensor: Rodrigues vector transformation.
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 3)`
Example:
>>> input = torch.rand(2, 3, 4) # Nx4x4
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
"""
if rotation_matrix.shape[1:] == (3,3):
rot_mat = rotation_matrix.reshape(-1, 3, 3)
hom = torch.tensor([0, 0, 1], dtype=torch.float32,
device=rotation_matrix.device).reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1)
rotation_matrix = torch.cat([rot_mat, hom], dim=-1)
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
aa = quaternion_to_angle_axis(quaternion)
aa[torch.isnan(aa)] = 0.0
return aa
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
"""
This function is borrowed from https://github.com/kornia/kornia
Convert quaternion vector to angle axis of rotation.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}"
.format(quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(
cos_theta < 0.0,
torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta))
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError(
"Input size must be a three dimensional tensor. Got {}".format(
rotation_matrix.shape))
if not rotation_matrix.shape[-2:] == (3, 4):
raise ValueError(
"Input size must be a N x 3 x 4 tensor. Got {}".format(
rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1
mask_c1 = mask_d2 * ~mask_d0_d1
mask_c2 = ~mask_d2 * mask_d0_nd1
mask_c3 = ~mask_d2 * ~mask_d0_nd1
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
q *= 0.5
return q
def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000., img_size=224.):
"""
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (25, 3) 3D joint locations
joints: (25, 3) 2D joint locations and confidence
Returns:
(3,) camera translation vector
"""
num_joints = S.shape[0]
# focal length
f = np.array([focal_length,focal_length])
# optical center
center = np.array([img_size/2., img_size/2.])
# transformations
Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1)
XY = np.reshape(S[:,0:2],-1)
O = np.tile(center,num_joints)
F = np.tile(f,num_joints)
weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1)
# least squares
Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T
c = (np.reshape(joints_2d,-1)-O)*Z - F*XY
# weighted least squares
W = np.diagflat(weight2)
Q = np.dot(W,Q)
c = np.dot(W,c)
# square matrix
A = np.dot(Q.T,Q)
b = np.dot(Q.T,c)
# solution
trans = np.linalg.solve(A, b)
return trans
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.):
"""
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (B, 49, 3) 3D joint locations
joints: (B, 49, 3) 2D joint locations and confidence
Returns:
(B, 3) camera translation vectors
"""
device = S.device
# Use only joints 25:49 (GT joints)
S = S[:, 25:, :].cpu().numpy()
joints_2d = joints_2d[:, 25:, :].cpu().numpy()
joints_conf = joints_2d[:, :, -1]
joints_2d = joints_2d[:, :, :-1]
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
# Find the translation for each example in the batch
for i in range(S.shape[0]):
S_i = S[i]
joints_i = joints_2d[i]
conf_i = joints_conf[i]
trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size)
return torch.from_numpy(trans).to(device)
def rot6d_to_rotmat_spin(x):
"""Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,6) Batch of 6-D rotation representations
Output:
(B,3,3) Batch of corresponding rotation matrices
"""
x = x.view(-1,3,2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
# inp = a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1
# denom = inp.pow(2).sum(dim=1).sqrt().unsqueeze(-1) + 1e-8
# b2 = inp / denom
b3 = torch.cross(b1, b2)
return torch.stack((b1, b2, b3), dim=-1)
def rot6d_to_rotmat(x):
x = x.view(-1,3,2)
# Normalize the first vector
b1 = F.normalize(x[:, :, 0], dim=1, eps=1e-6)
dot_prod = torch.sum(b1 * x[:, :, 1], dim=1, keepdim=True)
# Compute the second vector by finding the orthogonal complement to it
b2 = F.normalize(x[:, :, 1] - dot_prod * b1, dim=-1, eps=1e-6)
# Finish building the basis by taking the cross product
b3 = torch.cross(b1, b2, dim=1)
rot_mats = torch.stack([b1, b2, b3], dim=-1)
return rot_mats
def rigid_transform_3D(A, B):
n, dim = A.shape
centroid_A = np.mean(A, axis = 0)
centroid_B = np.mean(B, axis = 0)
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n
U, s, V = np.linalg.svd(H)
R = np.dot(np.transpose(V), np.transpose(U))
if np.linalg.det(R) < 0:
s[-1] = -s[-1]
V[2] = -V[2]
R = np.dot(np.transpose(V), np.transpose(U))
varP = np.var(A, axis=0).sum()
c = 1/varP * np.sum(s)
t = -np.dot(c*R, np.transpose(centroid_A)) + np.transpose(centroid_B)
return c, R, t
def rigid_align(A, B):
c, R, t = rigid_transform_3D(A, B)
A2 = np.transpose(np.dot(c*R, np.transpose(A))) + t
return A2
def compute_error(output, target):
with torch.no_grad():
pred_verts = output[0]['verts'].reshape(-1, 6890, 3)
target_verts = target['verts'].reshape(-1, 6890, 3)
pred_j3ds = output[0]['kp_3d'].reshape(-1, 17, 3)
target_j3ds = target['kp_3d'].reshape(-1, 17, 3)
# mpve
pred_verts = pred_verts - pred_j3ds[:, :1, :]
target_verts = target_verts - target_j3ds[:, :1, :]
mpves = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).cpu()
# mpjpe
pred_j3ds = pred_j3ds - pred_j3ds[:, :1, :]
target_j3ds = target_j3ds - target_j3ds[:, :1, :]
mpjpes = torch.sqrt(((pred_j3ds - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu()
return mpjpes.mean(), mpves.mean()
def compute_error_frames(output, target):
with torch.no_grad():
pred_verts = output[0]['verts'].reshape(-1, 6890, 3)
target_verts = target['verts'].reshape(-1, 6890, 3)
pred_j3ds = output[0]['kp_3d'].reshape(-1, 17, 3)
target_j3ds = target['kp_3d'].reshape(-1, 17, 3)
# mpve
pred_verts = pred_verts - pred_j3ds[:, :1, :]
target_verts = target_verts - target_j3ds[:, :1, :]
mpves = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).cpu()
# mpjpe
pred_j3ds = pred_j3ds - pred_j3ds[:, :1, :]
target_j3ds = target_j3ds - target_j3ds[:, :1, :]
mpjpes = torch.sqrt(((pred_j3ds - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu()
return mpjpes, mpves
def evaluate_mesh(results):
pred_verts = results['verts'].reshape(-1, 6890, 3)
target_verts = results['verts_gt'].reshape(-1, 6890, 3)
pred_j3ds = results['kp_3d'].reshape(-1, 17, 3)
target_j3ds = results['kp_3d_gt'].reshape(-1, 17, 3)
num_samples = pred_j3ds.shape[0]
# mpve
pred_verts = pred_verts - pred_j3ds[:, :1, :]
target_verts = target_verts - target_j3ds[:, :1, :]
mpve = np.mean(np.mean(np.sqrt(np.square(pred_verts - target_verts).sum(axis=2)), axis=1))
# mpjpe-17 & mpjpe-14
h36m_17_to_14 = (1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16)
pred_j3ds_17j = (pred_j3ds - pred_j3ds[:, :1, :])
target_j3ds_17j = (target_j3ds - target_j3ds[:, :1, :])
pred_j3ds = pred_j3ds_17j[:, h36m_17_to_14, :].copy()
target_j3ds = target_j3ds_17j[:, h36m_17_to_14, :].copy()
mpjpe = np.mean(np.sqrt(np.square(pred_j3ds - target_j3ds).sum(axis=2)), axis=1) # (N, )
mpjpe_17j = np.mean(np.sqrt(np.square(pred_j3ds_17j - target_j3ds_17j).sum(axis=2)), axis=1) # (N, )
pred_j3ds_pa, pred_j3ds_pa_17j = [], []
for n in range(num_samples):
pred_j3ds_pa.append(rigid_align(pred_j3ds[n], target_j3ds[n]))
pred_j3ds_pa_17j.append(rigid_align(pred_j3ds_17j[n], target_j3ds_17j[n]))
pred_j3ds_pa = np.array(pred_j3ds_pa)
pred_j3ds_pa_17j = np.array(pred_j3ds_pa_17j)
pa_mpjpe = np.mean(np.sqrt(np.square(pred_j3ds_pa - target_j3ds).sum(axis=2)), axis=1) # (N, )
pa_mpjpe_17j = np.mean(np.sqrt(np.square(pred_j3ds_pa_17j - target_j3ds_17j).sum(axis=2)), axis=1) # (N, )
error_dict = {
'mpve': mpve.mean(),
'mpjpe': mpjpe.mean(),
'pa_mpjpe': pa_mpjpe.mean(),
'mpjpe_17j': mpjpe_17j.mean(),
'pa_mpjpe_17j': pa_mpjpe_17j.mean(),
}
return error_dict
def rectify_pose(pose):
"""
Rectify "upside down" people in global coord
Args:
pose (72,): Pose.
Returns:
Rotated pose.
"""
pose = pose.copy()
R_mod = cv2.Rodrigues(np.array([np.pi, 0, 0]))[0]
R_root = cv2.Rodrigues(pose[:3])[0]
new_root = R_root.dot(R_mod)
pose[:3] = cv2.Rodrigues(new_root)[0].reshape(3)
return pose
def flip_thetas(thetas):
"""Flip thetas.
Parameters
----------
thetas : numpy.ndarray
Joints in shape (F, num_thetas, 3)
theta_pairs : list
List of theta pairs.
Returns
-------
numpy.ndarray
Flipped thetas with shape (F, num_thetas, 3)
"""
#Joint pairs which defines the pairs of joint to be swapped when the image is flipped horizontally.
theta_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23))
thetas_flip = thetas.copy()
# reflect horizontally
thetas_flip[:, :, 1] = -1 * thetas_flip[:, :, 1]
thetas_flip[:, :, 2] = -1 * thetas_flip[:, :, 2]
# change left-right parts
for pair in theta_pairs:
thetas_flip[:, pair[0], :], thetas_flip[:, pair[1], :] = \
thetas_flip[:, pair[1], :], thetas_flip[:, pair[0], :].copy()
return thetas_flip
def flip_thetas_batch(thetas):
"""Flip thetas in batch.
Parameters
----------
thetas : numpy.array
Joints in shape (N, F, num_thetas*3)
theta_pairs : list
List of theta pairs.
Returns
-------
numpy.array
Flipped thetas with shape (N, F, num_thetas*3)
"""
#Joint pairs which defines the pairs of joint to be swapped when the image is flipped horizontally.
theta_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23))
thetas_flip = copy.deepcopy(thetas).reshape(*thetas.shape[:2], 24, 3)
# reflect horizontally
thetas_flip[:, :, :, 1] = -1 * thetas_flip[:, :, :, 1]
thetas_flip[:, :, :, 2] = -1 * thetas_flip[:, :, :, 2]
# change left-right parts
for pair in theta_pairs:
thetas_flip[:, :, pair[0], :], thetas_flip[:, :, pair[1], :] = \
thetas_flip[:, :, pair[1], :], thetas_flip[:, :, pair[0], :].clone()
return thetas_flip.reshape(*thetas.shape[:2], -1)
# def smpl_aa_to_ortho6d(smpl_aa):
# # [...,72] -> [...,144]
# rot_aa = smpl_aa.reshape([-1,24,3])
# rotmat = axis_angle_to_matrix(rot_aa)
# rot6d = matrix_to_rotation_6d(rotmat)
# rot6d = rot6d.reshape(-1,24*6)
# return rot6d