|
import os |
|
import sys |
|
import copy |
|
import pickle |
|
import ipdb |
|
import torch |
|
import numpy as np |
|
sys.path.insert(0, os.getcwd()) |
|
from lib.utils.utils_data import split_clips |
|
from tqdm import tqdm |
|
|
|
fileName = open('data/AMASS/amass_joints_h36m_60.pkl','rb') |
|
joints_all = pickle.load(fileName) |
|
|
|
joints_cam = [] |
|
vid_list = [] |
|
vid_len_list = [] |
|
scale_factor = 0.298 |
|
|
|
for i, item in enumerate(joints_all): |
|
item = item.astype(np.float32) |
|
vid_len = item.shape[1] |
|
vid_len_list.append(vid_len) |
|
for _ in range(vid_len): |
|
vid_list.append(i) |
|
real2cam = np.array([[1,0,0], |
|
[0,0,1], |
|
[0,-1,0]], dtype=np.float32) |
|
item = np.transpose(item, (1,0,2)) |
|
motion_cam = item @ real2cam |
|
motion_cam *= scale_factor |
|
|
|
joints_cam.append(motion_cam) |
|
|
|
joints_cam_all = np.vstack(joints_cam) |
|
split_id = datareader.split_clips(vid_list, n_frames=243, data_stride=81) |
|
print(joints_cam_all.shape) |
|
|
|
max_x, minx_x = np.max(joints_cam_all[:,:,0]), np.min(joints_cam_all[:,:,0]) |
|
max_y, minx_y = np.max(joints_cam_all[:,:,1]), np.min(joints_cam_all[:,:,1]) |
|
max_z, minx_z = np.max(joints_cam_all[:,:,2]), np.min(joints_cam_all[:,:,2]) |
|
print(max_x, minx_x) |
|
print(max_y, minx_y) |
|
print(max_z, minx_z) |
|
|
|
joints_cam_clip = joints_cam_all[split_id] |
|
print(joints_cam_clip.shape) |
|
|
|
|
|
|
|
root_path = "data/motion3d/MB3D_f243s81/AMASS" |
|
subset_name = "train" |
|
save_path = os.path.join(root_path, subset_name) |
|
if not os.path.exists(save_path): |
|
os.makedirs(save_path) |
|
|
|
num_clips = len(joints_cam_clip) |
|
for i in tqdm(range(num_clips)): |
|
motion = joints_cam_clip[i] |
|
data_dict = { |
|
"data_input": None, |
|
"data_label": motion |
|
} |
|
with open(os.path.join(save_path, "%08d.pkl" % i), "wb") as myprofile: |
|
pickle.dump(data_dict, myprofile) |
|
|
|
|
|
|