Kennedy wambugu commited on
Commit
2b77473
·
verified ·
1 Parent(s): 83c466f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -124
README.md CHANGED
@@ -1,199 +1,223 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
 
 
166
 
167
  #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - vision transformer
5
+ - agriculture
6
+ - plant disease detection
7
+ - smart farming
8
+ - image classification
9
+ license: mit
10
+ metrics:
11
+ - accuracy
12
+ base_model:
13
+ - WinKawaks/vit-tiny-patch16-224
14
+ pipeline_tag: image-classification
15
  ---
16
 
17
+ # Model Card for Smart Farming Disease Detection Transformer
 
 
 
18
 
19
+ This model is a Vision Transformer (ViT) designed to identify plant diseases in crops as part of a smart agricultural farming system. It has been trained on a diverse dataset of plant images, including different disease categories affecting crops such as corn, potato, rice, and wheat. The model aims to provide farmers and agronomists with real-time disease detection for better crop management.
20
 
21
  ## Model Details
22
 
23
  ### Model Description
24
 
25
+ This Vision Transformer model has been fine-tuned to classify various plant diseases commonly found in agricultural settings. The model can classify diseases in crops such as corn, potato, rice, and wheat, identifying diseases like rust, blight, leaf spots, and others. The goal is to enable precision farming by helping farmers detect diseases early and take appropriate actions.
26
+
27
+ - **Developed by:** Wambugu Kinyua
28
+ - **Model type:** Vision Transformer (ViT)
29
+ - **Languages (NLP):** N/A (Computer Vision Model)
30
+ - **License:** Apache 2.0
31
+ - **Finetuned from model:** (WinKawaks/vit-tiny-patch16-224)[https://huggingface.co/WinKawaks/vit-tiny-patch16-224]
32
+ - **Input:** Images of crops (RGB format)
33
+ - **Output:** Disease classification labels (healthy or diseased categories)
34
+ ## Diseases from the model
35
+
36
+ | Crop | Diseases Identified |
37
+ |--------|------------------------------|
38
+ | Corn | Common Rust |
39
+ | Corn | Gray Leaf Spot |
40
+ | Corn | Healthy |
41
+ | Corn | Leaf Blight |
42
+ | - | Invalid |
43
+ | Potato | Early Blight |
44
+ | Potato | Healthy |
45
+ | Potato | Late Blight |
46
+ | Rice | Brown Spot |
47
+ | Rice | Healthy |
48
+ | Rice | Hispa |
49
+ | Rice | Leaf Blast |
50
+ | Wheat | Brown Rust |
51
+ | Wheat | Healthy |
52
+ | Wheat | Yellow Rust |
53
 
 
 
 
 
 
 
 
54
 
 
 
 
 
 
 
 
55
 
56
  ## Uses
57
 
 
 
58
  ### Direct Use
59
 
60
+ This model can be used directly to classify images of crops to detect plant diseases. It is especially useful for precision farming, enabling users to monitor crop health and take early interventions based on the detected disease.
61
 
62
+ ### Downstream Use
63
 
64
+ This model can be fine-tuned on other agricultural datasets for specific crops or regions to improve its performance or be integrated into larger precision farming systems that include other features like weather predictions and irrigation control.
 
 
 
 
65
 
66
  ### Out-of-Scope Use
67
 
68
+ This model is not designed for non-agricultural image classification tasks or for environments with insufficient or very noisy data. Misuse includes using the model in areas with vastly different agricultural conditions from those it was trained on.
 
 
69
 
70
  ## Bias, Risks, and Limitations
71
 
72
+ - The model may exhibit bias toward the crops and diseases present in the training dataset, leading to lower performance on unrepresented diseases or crop varieties.
73
+ - False negatives (failing to detect a disease) may result in untreated crop damage, while false positives could lead to unnecessary interventions.
 
74
 
75
  ### Recommendations
76
 
77
+ Users should evaluate the model on their specific crops and farming conditions. Regular updates and retraining with local data are recommended for optimal performance.
 
 
78
 
79
  ## How to Get Started with the Model
80
 
81
+ ```python
82
+ import matplotlib.pyplot as plt
83
+ from PIL import Image, UnidentifiedImageError
84
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
85
+
86
+ label2id= {'Corn___Common_Rust': '0',
87
+ 'Corn___Gray_Leaf_Spot': '1',
88
+ 'Corn___Healthy': '2',
89
+ 'Corn___Leaf_Blight': '3',
90
+ 'Invalid': '4',
91
+ 'Potato___Early_Blight': '5',
92
+ 'Potato___Healthy': '6',
93
+ 'Potato___Late_Blight': '7',
94
+ 'Rice___Brown_Spot': '8',
95
+ 'Rice___Healthy': '9',
96
+ 'Rice___Hispa': '10',
97
+ 'Rice___Leaf_Blast': '11',
98
+ 'Wheat___Brown_Rust': '12',
99
+ 'Wheat___Healthy': '13',
100
+ 'Wheat___Yellow_Rust': '14'},
101
+ id2label = {'0': 'Corn___Common_Rust',
102
+ '1': 'Corn___Gray_Leaf_Spot',
103
+ '2': 'Corn___Healthy',
104
+ '3': 'Corn___Leaf_Blight',
105
+ '4': 'Invalid',
106
+ '5': 'Potato___Early_Blight',
107
+ '6': 'Potato___Healthy',
108
+ '7': 'Potato___Late_Blight',
109
+ '8': 'Rice___Brown_Spot',
110
+ '9': 'Rice___Healthy',
111
+ '10': 'Rice___Hispa',
112
+ '11': 'Rice___Leaf_Blast',
113
+ '12': 'Wheat___Brown_Rust',
114
+ '13': 'Wheat___Healthy',
115
+ '14': 'Wheat___Yellow_Rust'}
116
+
117
+ feature_extractor = ViTFeatureExtractor.from_pretrained('WinKawaks/vit-tiny-patch16-224')
118
+ model = ViTForImageClassification.from_pretrained(
119
+ 'wambugu1738/crop_leaf_diseases_vit',
120
+ num_labels=15,
121
+ label2id=label2id,
122
+ id2label=id2label,
123
+ ignore_mismatched_sizes=True
124
+ )
125
+
126
+ from PIL import Image
127
+ image = Image.open('path_to_image')
128
+ inputs = feature_extractor(images=image, return_tensors="pt")
129
+ outputs = model(**inputs)
130
+ logits = outputs.logits
131
+ predicted_class_idx = logits.argmax(-1).item()
132
+ print("Predicted class:", model.config.id2label[str(predicted_class_idx)])
133
+ ```
134
 
135
  ## Training Details
136
 
137
  ### Training Data
138
 
139
+ The model was trained on a dataset containing images of various crops with labeled diseases, including the following categories:
 
 
 
 
140
 
141
+ - **Corn**: Common Rust, Gray Leaf Spot, Leaf Blight, Healthy
142
+ - **Potato**: Early Blight, Late Blight, Healthy
143
+ - **Rice**: Brown Spot, Hispa, Leaf Blast, Healthy
144
+ - **Wheat**: Brown Rust, Yellow Rust, Healthy
145
 
146
+ The dataset also includes images captured under various lighting conditions and angles to simulate real-world farming scenarios.
147
 
148
+ ### Training Procedure
149
 
150
+ The model was fine-tuned using a vision transformer architecture pre-trained on the ImageNet dataset. The dataset was preprocessed by resizing the images and normalizing the pixel values.
151
 
152
  #### Training Hyperparameters
153
 
154
+ - **Batch size:** 32
155
+ - **Learning rate:** 2e-5
156
+ - **Epochs:** 4
157
+ - **Optimizer:** AdamW
158
+ - **Precision:** fp16
 
 
 
 
 
 
 
 
159
 
160
+ ### Evaluation
161
+ ![Confusion matrix](conf_mat.png)
162
 
 
163
 
164
+ #### Testing Data, Factors & Metrics
165
 
166
+ The model was evaluated using a validation set consisting of 20% of the original dataset, with the following metrics:
167
 
168
+ - **Accuracy:** 98%
169
+ - **Precision:** 97%
170
+ - **Recall:** 97%
171
+ - **F1 Score:** 96%
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
  ## Environmental Impact
174
 
175
+ Carbon emissions during model training can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
 
 
176
 
177
+ - **Hardware Type:** NVIDIA L40S
178
+ - **Hours used:** 1 hours
179
+ - **Cloud Provider:** Lightning AI
 
 
180
 
181
+ ## Technical Specifications
182
 
183
  ### Model Architecture and Objective
184
 
185
+ The model uses a Vision Transformer architecture to learn image representations and classify them into disease categories. Its self-attention mechanism enables it to capture global contextual information in the images, making it suitable for agricultural disease detection.
186
 
187
  ### Compute Infrastructure
188
 
 
 
189
  #### Hardware
190
 
191
+ - NVIDIA L40S GPUs
192
+ - 48 GB RAM
193
+ - SSD storage for fast I/O
194
 
195
  #### Software
196
 
197
+ - Python 3.9
198
+ - PyTorch 2.4.1+cu121
199
+ - Transformers library by Hugging Face
200
 
201
+ ## Citation
202
 
203
+ If you use this model in your research or applications, please cite it as:
204
 
205
  **BibTeX:**
206
 
207
+ ```
208
+ @misc{kinyua2024smartfarming,
209
+ title={Smart Farming Disease Detection Transformer},
210
+ author={Wambugu Kinyua},
211
+ year={2024},
212
+ publisher={Hugging Face},
213
+ }
214
+ ```
215
 
216
  **APA:**
217
 
218
+ Kinyua, W. (2024). Smart Farming Disease Detection Transformer. Hugging Face.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
 
220
  ## Model Card Contact
221
 
222
+ For further inquiries, contact: [email protected]
223
+ ```