File size: 1,744 Bytes
762fa07
 
 
 
 
 
 
 
 
 
 
 
8c17c7e
 
 
762fa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b024d
 
 
 
762fa07
8c17c7e
 
 
 
 
762fa07
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: apache-2.0
language:
- ru
library_name: transformers
pipeline_tag: automatic-speech-recognition
tags:
- asr
- Pytorch
- pruned
- audio
- automatic-speech-recognition
metrics:
- cer
- wer
---

# Whisper-small-ru-pruned

## Model info
This is a pruned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) model with only russian tokens left.
Pruning was made without any fine-tuning. Method from [this post](https://medium.com/m/global-identity-2?redirectUrl=https%3A%2F%2Ftowardsdatascience.com%2Fhow-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) was used.

## Size
Only 10% tokens was left including special whisper tokens, added whisper tokens, 100 most popular tokens from tokenizer and 3000 most popular Russian tokens computed by tokenization of russian text corpus.

Model size is 15%  less then original whisper-small:
|  | openai/whisper-small | waveletdeboshir/whisper-small-ru-pruned |
| :------ | :------ | :------ |
| n of parameters | 242 M | 205 M |
| n of parameters (with proj_out layer) | 281 M | 209 M |
| model file size | 967 Mb | 837 Mb |
| vocab_size | 51865 | 4705 |

## Other pruned whisper models
* [waveletdeboshir/whisper-tiny-ru-pruned](https://huggingface.co/waveletdeboshir/whisper-tiny-ru-pruned)
* [waveletdeboshir/whisper-base-ru-pruned](https://huggingface.co/waveletdeboshir/whisper-base-ru-pruned)

## Metrics
|  | openai/whisper-small | waveletdeboshir/whisper-small-ru-pruned |
| :------ | :------ | :------ |
| WER* golos-test-crowd | 0.3358 | 0.3471 |
| CER* golos-test-crowd | 0.1561 | 0.1444 |
*Metrics were measured after text normalization

You can fine-tune this model on your data to achive better performance.

## Colab for pruning
TODO