waveletdeboshir
commited on
Add usage example
Browse files
README.md
CHANGED
@@ -45,5 +45,30 @@ Model size is 15% less then original whisper-small:
|
|
45 |
|
46 |
You can fine-tune this model on your data to achive better performance.
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
## Colab for pruning
|
49 |
TODO
|
|
|
45 |
|
46 |
You can fine-tune this model on your data to achive better performance.
|
47 |
|
48 |
+
## Usage
|
49 |
+
Model can be used as an original whisper:
|
50 |
+
|
51 |
+
```python
|
52 |
+
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
53 |
+
>>> import torchaudio
|
54 |
+
|
55 |
+
>>> # load audio
|
56 |
+
>>> wav, sr = torchaudio.load("audio.wav")
|
57 |
+
|
58 |
+
>>> # load model and processor
|
59 |
+
>>> processor = WhisperProcessor.from_pretrained("waveletdeboshir/whisper-small-ru-pruned")
|
60 |
+
>>> model = WhisperForConditionalGeneration.from_pretrained("waveletdeboshir/whisper-small-ru-pruned")
|
61 |
+
|
62 |
+
>>> input_features = processor(wav[0], sampling_rate=sr, return_tensors="pt").input_features
|
63 |
+
|
64 |
+
>>> # generate token ids
|
65 |
+
>>> predicted_ids = model.generate(input_features)
|
66 |
+
>>> # decode token ids to text
|
67 |
+
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
68 |
+
['<|startoftranscript|><|ru|><|transcribe|><|notimestamps|> Начинаем работу.<|endoftext|>']
|
69 |
+
|
70 |
+
```
|
71 |
+
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`.
|
72 |
+
|
73 |
## Colab for pruning
|
74 |
TODO
|