File size: 13,010 Bytes
a9cb3f0
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7daf6b2ce050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7daf6b2ce0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7daf6b2ce170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7daf6b2ce200>", "_build": "<function ActorCriticPolicy._build at 0x7daf6b2ce290>", "forward": "<function ActorCriticPolicy.forward at 0x7daf6b2ce320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7daf6b2ce3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7daf6b2ce440>", "_predict": "<function ActorCriticPolicy._predict at 0x7daf6b2ce4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7daf6b2ce560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7daf6b2ce5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7daf6b2ce680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7daf6b2d8cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3000320, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711410760814288384, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAlsTwcLjy8+UimvMrpgj3jVvy5doG1uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEIjC1qnFaMAWyUS9KMAXSUR0C0kf+zUqhEdX2UKGgGR0BwbfaHsTnJaAdLxWgIR0C0kkX/HYHxdX2UKGgGR0BNAo4lyBClaAdLlmgIR0C0knm6K+BZdX2UKGgGR0Bw2VZKWcBmaAdLp2gIR0C0krV2NedDdX2UKGgGR0Bws5UedTYNaAdLuWgIR0C0kvws9SuRdX2UKGgGR0BxpeaDwpfAaAdLvWgIR0C0k9Z8F6iTdX2UKGgGR0BwrBm8M/hVaAdLz2gIR0C0lCPhESdwdX2UKGgGR0BwFE/yGzrvaAdL32gIR0C0lHQK0D2bdX2UKGgGR0ByNGuieumraAdL1WgIR0C0lMVwT/Q0dX2UKGgGR0BU1wT/Q0GeaAdLj2gIR0C0lQwsPJ7tdX2UKGgGR0BwJIzk6tDEaAdLyGgIR0C0lWdyT6i1dX2UKGgGR0BxB6PT5O8DaAdLtGgIR0C0lbQw482adX2UKGgGR0BHgnggow23aAdLgmgIR0C0lfhpYcNpdX2UKGgGR0BgLylnAZbZaAdN6ANoCEdAtJgw7bL2YnV9lChoBkc/4nTuv2Xb/WgHS4NoCEdAtJhiGxlg+nV9lChoBkdAch2Pnjhky2gHS/hoCEdAtJi7zJ6ppHV9lChoBkdAciwksSTQmmgHS9doCEdAtJkLdXT3I3V9lChoBkdAb8japPykK2gHS75oCEdAtJlQJx//enV9lChoBkdAcyB08vEjxGgHTQEBaAhHQLSZrF7laKV1fZQoaAZHQEUOcjJMg2ZoB0uHaAhHQLSZ3GQSzxB1fZQoaAZHQHGRwFC9h7VoB0veaAhHQLSaLQ6IWP91fZQoaAZHQEsclnh86WBoB0uFaAhHQLSaW6guh9N1fZQoaAZHQHFIPovBacJoB0vGaAhHQLSbNQuVX3h1fZQoaAZHQG3Xdpyp71JoB0upaAhHQLSbcPtD2J11fZQoaAZHQEozNA1NxlxoB0uDaAhHQLSbnpCrtE51fZQoaAZHQHCRwa72+PBoB0uyaAhHQLSb3RqGlAN1fZQoaAZHQHGTjqrzXjFoB0vYaAhHQLScKr1dxAB1fZQoaAZHQGxcqC6H0shoB0u4aAhHQLSccb0OEuh1fZQoaAZHQHA03UlRgqpoB0vbaAhHQLScwIwM6R11fZQoaAZHQG+ct+1Bt1poB0vBaAhHQLSdBXGwRoR1fZQoaAZHQC8LwF1SwW5oB0tqaAhHQLSdLKEFnqV1fZQoaAZHQHJq8PnSv1VoB0u2aAhHQLSdbb5dnkF1fZQoaAZHQG2p1kDp1RtoB0uwaAhHQLSdrBz3h4t1fZQoaAZHQHFin7DVH4JoB0vBaAhHQLSd8QHAymB1fZQoaAZHQHDpg5eZ5RloB0vXaAhHQLSe0mZVn291fZQoaAZHQG9mEA5q/M5oB0uqaAhHQLSfEt9QXRB1fZQoaAZHQEGxUOuq3mVoB0uEaAhHQLSfRblijL11fZQoaAZHQEYsSeyzHCJoB0uFaAhHQLSfdMWoFV11fZQoaAZHQHKsf7vXsgNoB0vpaAhHQLSfxq4H5ah1fZQoaAZHQHC+DcZccENoB0vHaAhHQLSgDFh5Pdl1fZQoaAZHQHEXmAXl8w5oB0uzaAhHQLSgTDe0ojR1fZQoaAZHQHFKhrWRRuVoB0u3aAhHQLSgjy0a6z51fZQoaAZHQEVAt1ZDArRoB0uMaAhHQLSg1p35eqt1fZQoaAZHQHBFwNsnAqNoB0uvaAhHQLShJ1/Ue+51fZQoaAZHQF+XeHBUJfJoB03oA2gIR0C0o4d+so2GdX2UKGgGR0Ba7mTPjXFtaAdN6ANoCEdAtKT2BEroXHV9lChoBkdAb55Q/oq0+mgHS6NoCEdAtKUvYmLLp3V9lChoBkdActE1W8yvcWgHS+5oCEdAtKYaDL8rJHV9lChoBkdAcu6GoJiRXGgHS7NoCEdAtKZahZha1XV9lChoBkdAcHYG5MDfWWgHS6RoCEdAtKaYTewcHXV9lChoBkdAcGk7Lt/nXGgHS79oCEdAtKbc690zTHV9lChoBkdAcTZjwQUYbmgHS6doCEdAtKcYq4H5anV9lChoBkdAcTbTUiILxGgHS7hoCEdAtKdaXTmW+3V9lChoBkdAcuhWwNb1RWgHS89oCEdAtKemDSPU8XV9lChoBkdAcp6CTUy57WgHS9toCEdAtKf0065oXnV9lChoBkdAMFQd4mkWRGgHS4hoCEdAtKglc7hegXV9lChoBkdAcQQ8PFvQ4WgHS+JoCEdAtKh28274BXV9lChoBkdAcKUdnkDIR2gHS6JoCEdAtKixiAlOXXV9lChoBkdAchx6Uqx1PmgHS+VoCEdAtKmbTH80lHV9lChoBkdAcsGQHRkVe2gHS85oCEdAtKnr6guh9XV9lChoBkdAch3ZqmCROmgHS6BoCEdAtKon9GZuynV9lChoBkdAc91al1r6+GgHS9poCEdAtKp60NSZSnV9lChoBkdAcgduF6AvtmgHTQcBaAhHQLSq2b0voNd1fZQoaAZHQHIAW0qpcX5oB0vFaAhHQLSrHjDsMRZ1fZQoaAZHQHH68EeQuEpoB0vFaAhHQLSrYxLTQVt1fZQoaAZHQHGfqciGFi9oB0u9aAhHQLSrq3BYV7B1fZQoaAZHQG//fapPykNoB0u7aAhHQLSr8qkdmxt1fZQoaAZHQG/Y2rOqvNhoB0uoaAhHQLSsMLjxTbZ1fZQoaAZHQHCjWKhtcfNoB0u6aAhHQLSsfT7VJ+V1fZQoaAZHQHJkZ+MIeHVoB0vTaAhHQLStpQ3xWkt1fZQoaAZHQEpKXt0FKTVoB0tVaAhHQLStz1vES/V1fZQoaAZHQHE574WUKRdoB0vHaAhHQLSuN/7iyY51fZQoaAZHQHFLpJ04iotoB0ujaAhHQLSud4LkS291fZQoaAZHQG80eIMz/IdoB00UAWgIR0C0rtx0yP+5dX2UKGgGR0Bwrdf/m1YyaAdL2WgIR0C0rylwtJ4CdX2UKGgGR0BxZuRU3n6maAdLqGgIR0C0r2UQK8cudX2UKGgGR0BvX6kM1CPZaAdLzWgIR0C0r69AHE/CdX2UKGgGR0BxCcqG1x82aAdL32gIR0C0r/1ZTyavdX2UKGgGR0Bu+z+HaewtaAdLo2gIR0C0sDWj4593dX2UKGgGR0BxlAKqn3tbaAdL0GgIR0C0sRJydWhidX2UKGgGR0ByDxagVXV9aAdLnmgIR0C0sUotHxz8dX2UKGgGR0ByTmGJvYOEaAdNAAFoCEdAtLGj24/eL3V9lChoBkdAczwn4fwI+mgHS+JoCEdAtLH0qoZQ53V9lChoBkdAMwzVtoBaLWgHS4loCEdAtLIjgdfb9XV9lChoBkdAcjvCFsYVI2gHS+doCEdAtLJ6F6AvtnV9lChoBkdAcJHn1WbPQmgHS8NoCEdAtLLBLamGd3V9lChoBkdAc4HNVBD5TWgHS+FoCEdAtLMQgNgBtHV9lChoBkdAb5D0knkT6GgHS7RoCEdAtLNPiMo+fXV9lChoBkdAccESElE7XGgHS+5oCEdAtLOpEVnEl3V9lChoBkdAcdDYHgP3BmgHS65oCEdAtLPpTyauwHV9lChoBkdAcdOhg3Lmp2gHS+loCEdAtLTXy5I6KnV9lChoBkdAccdbGWD6FmgHS8VoCEdAtLUefUWl/HV9lChoBkdAcFM7fpD/l2gHS7VoCEdAtLVfpgTh53V9lChoBkdAUIbIdU83dmgHS4NoCEdAtLWO0zCUHXV9lChoBkdAccEGj9GZu2gHS+9oCEdAtLXnLcKw6nV9lChoBkdAca6bHp8neGgHS55oCEdAtLYgzeoDPnV9lChoBkdAcX6H/tICl2gHS7xoCEdAtLZljgAIY3V9lChoBkdAcVt3xWkrPWgHS8VoCEdAtLauGsV+JHV9lChoBkdActm1Fpfx+mgHS+RoCEdAtLcCc/dIoXV9lChoBkdAb/ztbcGke2gHS69oCEdAtLdBMg2ZRnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5860, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}