wayandadang
commited on
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +38 -38
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 287.56 +/- 15.67
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7daf6b2ce050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7daf6b2ce0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7daf6b2ce170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7daf6b2ce200>", "_build": "<function ActorCriticPolicy._build at 0x7daf6b2ce290>", "forward": "<function ActorCriticPolicy.forward at 0x7daf6b2ce320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7daf6b2ce3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7daf6b2ce440>", "_predict": "<function ActorCriticPolicy._predict at 0x7daf6b2ce4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7daf6b2ce560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7daf6b2ce5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7daf6b2ce680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7daf6b2d8cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711416470252775850, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAHbYVL4n3w29msaFuyq9F7o6k3k+8mDaOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJJ8QmNR3yMAWyUS9+MAXSUR0CcPlP+GXXzdX2UKGgGR0Bw2H0aqCHzaAdNDQFoCEdAnEAQ08/2TXV9lChoBkdAbkVVuJk5ImgHS9poCEdAnEFXqRlpXnV9lChoBkdAca+6ab4Ju2gHS9doCEdAnEKWjj7yhHV9lChoBkdAcct36AOJ+GgHS+5oCEdAnEQH7pFCs3V9lChoBkdAcTDNUwSJ0mgHS+5oCEdAnEV9Y8uBc3V9lChoBkdAci/PuG9HtmgHTRgBaAhHQJxHLRBu4w11fZQoaAZHQHEZyrgflp5oB0vfaAhHQJxLAUj9n9N1fZQoaAZHQHD82kep4r1oB0vLaAhHQJxMQSnLq2V1fZQoaAZHQHEKIEjgQ6JoB0vYaAhHQJxNiV4X40x1fZQoaAZHQG6I717IDHRoB0vFaAhHQJxOtpvgm7d1fZQoaAZHQHBO3CoCMgloB00CAWgIR0CcUDWq94/vdX2UKGgGR0BQWgEpy6tlaAdLjGgIR0CcURJY1YQrdX2UKGgGR0Bzhq2nbZezaAdL8WgIR0CcUn6nzg/DdX2UKGgGR0BvW0+5e7cxaAdL1GgIR0CcU7yeqaPTdX2UKGgGR0Bxf5jpcHGCaAdLvGgIR0CcVOEcsDnvdX2UKGgGR0BzvgYVIqb0aAdLyWgIR0CcVg9mYjSodX2UKGgGR0BxiGPOpsGgaAdL9WgIR0CcWgsNDtw8dX2UKGgGR0BxNzdl/YrbaAdL42gIR0CcW2YWcjJNdX2UKGgGR0BzYZhnanJlaAdL6mgIR0CcXNcE/0NCdX2UKGgGR0BATV0DEFW5aAdLqWgIR0CcXdowEhaDdX2UKGgGR0BwlzEJjUd8aAdL92gIR0CcX0mTkhicdX2UKGgGR0BxC64tpVS5aAdL7GgIR0CcYLZKFqSHdX2UKGgGR0BvLR9Vmz0IaAdL4mgIR0CcYhX+2mYTdX2UKGgGR0BwvKGyon8baAdL6WgIR0CcY2/dIoVmdX2UKGgGR0BvlFw1ivxIaAdLzWgIR0CcZKowVTJhdX2UKGgGR0BwlrCbc45taAdL8mgIR0CcaXq+ajN7dX2UKGgGR0BxjSx7iQ1aaAdL12gIR0CcaxAJ9iMHdX2UKGgGR0BwG65+YtxuaAdL9GgIR0CcbRPSlWOqdX2UKGgGR0BCSdnscABDaAdLkGgIR0CcbmsuFpPAdX2UKGgGR0BzjmAuqWC3aAdL8mgIR0Ccb9iYsunNdX2UKGgGR0BxNmV4X40uaAdL/WgIR0CccVQtSQ5ndX2UKGgGR0ByEL127nPnaAdLzGgIR0CccpivxH5KdX2UKGgGR0BQbyeNDMNdaAdLvWgIR0Ccc7JiRW92dX2UKGgGR0Byu9A7gbZOaAdLyGgIR0CcdN+mm+CcdX2UKGgGR0BvN14zJp35aAdL5WgIR0Ccdj0YCQtBdX2UKGgGR0BxI+Az544ZaAdLvmgIR0CceeA6+36RdX2UKGgGR0BzFgUDdP+GaAdL3WgIR0Cceyu2JBPbdX2UKGgGR0Byfg7bL2YfaAdL8mgIR0CcfJiQ1aW5dX2UKGgGR0BNXgaWHDaXaAdLp2gIR0CcfZB0p3HJdX2UKGgGR0BwfLPUrkKeaAdL1mgIR0CcftjHXEqEdX2UKGgGR0BxAoZAIIGAaAdLwWgIR0Ccf/jrRjSYdX2UKGgGR0BzpTZTQ3PzaAdL/2gIR0CcgX3irDIjdX2UKGgGR0BwyAfGMn7YaAdL8WgIR0CcgvOARTS9dX2UKGgGR0Bw/lKPGQ0XaAdL42gIR0CchEm5lOGkdX2UKGgGR0ByoODujRD1aAdL8GgIR0CciD4NZvDQdX2UKGgGR0BysdZ8rqdIaAdL1mgIR0CciYJ/XoTxdX2UKGgGR0BzVC5BkZrIaAdNDQFoCEdAnIsYKlYU4HV9lChoBkdAbNXfaYeDF2gHS+1oCEdAnIyJQ+EAYHV9lChoBkdAb+pat9x6wGgHS8hoCEdAnI265byH23V9lChoBkdAcKX48U21lWgHS/poCEdAnI9DIRywOnV9lChoBkdAcc270Fr2x2gHS+doCEdAnJC51ie/YnV9lChoBkdAcK/Fy7wrlWgHS95oCEdAnJIV50KZ2XV9lChoBkdAbizX6qKgqWgHS+doCEdAnJN2g8KXwHV9lChoBkdATFdOCXhOxmgHS7FoCEdAnJdLGza9K3V9lChoBkdAcSQQv6CUYGgHS9poCEdAnJj/HPu5SXV9lChoBkdAcFK49HMEBGgHS95oCEdAnJq4qoZQ53V9lChoBkdAUrNyvLX+VGgHS8BoCEdAnJxN0vGp/HV9lChoBkdAaaHtPYWcjWgHTboBaAhHQJyffItDlYF1fZQoaAZHQHGybeIl+mZoB0vaaAhHQJygwyHmA9V1fZQoaAZHQHJKDBhx5s1oB0viaAhHQJyiF+KCQLh1fZQoaAZHQHAbBtk4FRpoB0vPaAhHQJyjVxFRYRx1fZQoaAZHQHA4GU0Nz8xoB00DAWgIR0Ccp1mQr+YMdX2UKGgGR0BqrdG7SRbKaAdNZwNoCEdAnKyuWv8qF3V9lChoBkdAcj03rUsnRmgHS9FoCEdAnK3nyy2QXHV9lChoBkdAcYWAR02ca2gHS9BoCEdAnK8q68QI2XV9lChoBkdAcQ5ElE7W/mgHS/loCEdAnLCkdzXBg3V9lChoBkdAb81kK/mDDmgHS8RoCEdAnLHMENe+mHV9lChoBkdAbRjigkC3gGgHS8BoCEdAnLLqgM+eOHV9lChoBkdAchlsPatcOmgHS9FoCEdAnLa2iL2pQ3V9lChoBkdAcTbtCAtnPGgHS9toCEdAnLgSIpH7QHV9lChoBkdAcW+yZrpJPWgHS99oCEdAnLliiItUXHV9lChoBkdAcuYKohpxm2gHS8toCEdAnLqVzU7SzHV9lChoBkdAKG9H+ZPVNGgHS39oCEdAnLto7Njbz3V9lChoBkdAUknKyOaOP2gHS8doCEdAnLyaXv6TGHV9lChoBkdAcYeEIgNgB2gHS/hoCEdAnL4YF7laKXV9lChoBkdAb4x3GGVRk2gHS+ZoCEdAnL99DD0lJHV9lChoBkdAR5AzHjp9qmgHS7doCEdAnMCXj2i+L3V9lChoBkdATq5akhzNlmgHS6RoCEdAnMGOxrzoU3V9lChoBkdAcDjAhB7eEmgHS+1oCEdAnMV8riEQG3V9lChoBkdAcmHK+zt1IWgHS+VoCEdAnMcsfA9FF3V9lChoBkdAcA3NKyv9tWgHTQsBaAhHQJzJQh8pkPN1fZQoaAZHQHKi6+evpyJoB0v1aAhHQJzLICmuTzN1fZQoaAZHQE3UAXl8w6BoB0u4aAhHQJzMrQu27Wd1fZQoaAZHQHG+zIaLn9xoB0vaaAhHQJzOXHn2ZiN1fZQoaAZHQHLOETcqOLloB0vOaAhHQJzPj4k/r0J1fZQoaAZHQHNKYMOPNmloB00KAWgIR0Cc0SdpqREGdX2UKGgGR0Bx+RB5X2dvaAdLvGgIR0Cc0jyC4BmxdX2UKGgGR0Bxc3JhfBvaaAdL+2gIR0Cc1irvLHMmdX2UKGgGR0By+Qx1xKg7aAdNFQFoCEdAnNfFRtP56HV9lChoBkdActsIbwSamWgHS+9oCEdAnNk5imVJMHV9lChoBkdAccoQQ+UyHmgHS+JoCEdAnNqVbmlqJ3V9lChoBkdAcYAylvZRK2gHTV8BaAhHQJzcsyWRigF1fZQoaAZHQFRSjLB9Cu5oB0uiaAhHQJzdpmRNh3J1fZQoaAZHQHHfl2V3Ux5oB0vaaAhHQJze9NJvo/11fZQoaAZHQGEQwV0tAcFoB03oA2gIR0Cc52NBnjABdX2UKGgGR0BzE97rs0HhaAdNCgFoCEdAnOkBlxwQ2HV9lChoBkdAc68hhYvFnGgHS99oCEdAnOpMZpBX0XV9lChoBkdAb7GP5HmRvGgHS91oCEdAnOub3sXzlXV9lChoBkdASuo1BMSK32gHS61oCEdAnOyeTeO4onVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTIyLTMwM2NmMzM3YmQ2Yz6UjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e0bf5caeb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e0bf5caeb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e0bf5caec20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e0bf5caecb0>", "_build": "<function ActorCriticPolicy._build at 0x7e0bf5caed40>", "forward": "<function ActorCriticPolicy.forward at 0x7e0bf5caedd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e0bf5caee60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e0bf5caeef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e0bf5caef80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e0bf5caf010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e0bf5caf0a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e0bf5caf130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e0bf5c62ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10000384, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711601556263014770, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAO1wTT4ebJ4/SZAfP15NGb+FNaM+pGeBPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3.8399999999993994e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOfkjgQ6IaMAWyUS7yMAXSUR0DS61hXlr/LdX2UKGgGR0ByQD5P/JeWaAdL22gIR0DS62ZlqagFdX2UKGgGR0Bvr6DVYp2EaAdLxWgIR0DS63QNx2jgdX2UKGgGR0ByNYNYr8R+aAdLs2gIR0DS6373/PxAdX2UKGgGR0BzIqS8rZrYaAdLtGgIR0DS64rlA/s3dX2UKGgGR0BygqteUpuuaAdLwWgIR0DS65aQyRCAdX2UKGgGR0BxBUoH9m6HaAdLt2gIR0DS66HlkpZwdX2UKGgGR0Bzc27pV0cPaAdL42gIR0DS7BhWCEpRdX2UKGgGR0Bwq+txMnJDaAdL42gIR0DS7Csmx+rmdX2UKGgGR0Bwz5G3F1jiaAdLv2gIR0DS7DrF0gbIdX2UKGgGR0BzDySDAaegaAdL42gIR0DS7EyKVII4dX2UKGgGR0Bz/dqCYkVvaAdL72gIR0DS7GAzwc5sdX2UKGgGR0Byhhlum78OaAdLv2gIR0DS7HBchTwVdX2UKGgGR0Bxpk6Oo5xSaAdLxmgIR0DS7IHhn8KpdX2UKGgGR0BxME71ZkkKaAdLw2gIR0DS7JOkDZDidX2UKGgGR0BvxWBg/keZaAdL1mgIR0DS7KDigkC4dX2UKGgGR0BxQ9I/Z/TcaAdL0GgIR0DS7K3YUWVNdX2UKGgGR0ByRNk6Lfk4aAdL52gIR0DS7RkCmuTzdX2UKGgGR0Btsze0ojOcaAdNCAFoCEdA0u0pqEeyRnV9lChoBkdAcXvw3HaN/GgHS/FoCEdA0u04+evpyXV9lChoBkdAdD5fra/RFGgHS91oCEdA0u1GiVjZtnV9lChoBkdAchbXw9aEBmgHS7poCEdA0u1SAS39aXV9lChoBkdAcrweWfK6nWgHS7hoCEdA0u1d47A+IXV9lChoBkdAcMMPmgam42gHS8FoCEdA0u1qBMSK33V9lChoBkdAcNSu8scyWWgHS8BoCEdA0u11+OOsDHV9lChoBkdAc1bHf/FR52gHS65oCEdA0u2AwiaAnXV9lChoBkdAcQmxSHdoFmgHS+NoCEdA0u3sGOuJUHV9lChoBkdAchO1qFh5PmgHS8hoCEdA0u34npSrHXV9lChoBkdAcQUu2qkuYmgHS+ZoCEdA0u4HAf+0gXV9lChoBkdAccQcYqG1yGgHS8loCEdA0u4TanrIHXV9lChoBkdAcMfFaB7NS2gHS9ZoCEdA0u4hPRArx3V9lChoBkdAc+mzVMEidWgHS/ZoCEdA0u4wlGPPs3V9lChoBkdAb/fU4rBj4GgHS8RoCEdA0u49E3sHB3V9lChoBkdAcgwEKVpsXWgHS95oCEdA0u5Kj2SMcnV9lChoBkdAcctk+HJtBWgHS8ZoCEdA0u5WuloDgnV9lChoBkdAcqpmXgLqlmgHS89oCEdA0u5j6mfoR3V9lChoBkdAcHiNBWxQi2gHS+hoCEdA0u7PzJZGKHV9lChoBkdAcfYs2vStvGgHS8ZoCEdA0u7caYNRWXV9lChoBkdAcT8pgkTpPmgHS91oCEdA0u7q4PwuunV9lChoBkdAco/MgU1yemgHS+FoCEdA0u745xzaK3V9lChoBkdAceu7OVxCIGgHS7loCEdA0u8Eg3tKI3V9lChoBkdAcp5O7g88tGgHS/xoCEdA0u8U4XXRPXV9lChoBkdAY+wwr1/UfGgHTegDaAhHQNLv3u+qR2d1fZQoaAZHQHOFKyv9tMxoB0vTaAhHQNLv7P3ztkZ1fZQoaAZHQHFdizsyBTZoB0u5aAhHQNLv+pVfeDZ1fZQoaAZHQHDDH05EMLFoB0vqaAhHQNLwCUP1+RZ1fZQoaAZHQHEH6vmozepoB0vdaAhHQNLwFuKwY+B1fZQoaAZHQHKhJCrtE5RoB0v3aAhHQNLwJllGwzN1fZQoaAZHQHGwFjurp7loB0vSaAhHQNLwNVNtZV51fZQoaAZHQG/hQk5ZKWdoB0vbaAhHQNLwQ8K1G9Z1fZQoaAZHQHHADnzQNTdoB0vBaAhHQNLwT2f02+B1fZQoaAZHQHIfjrRjSXtoB0u3aAhHQNLwuIVdonN1fZQoaAZHQHHA2qHXVb1oB0vLaAhHQNLwxM+zMRp1fZQoaAZHQHIt/LHMlkZoB0u9aAhHQNLw0MfFJg91fZQoaAZHQHGt4oE0SAZoB0vbaAhHQNLw3lYMfA91fZQoaAZHQHI8H2ys0YVoB0vMaAhHQNLw62CmMwV1fZQoaAZHQHAD82eg+QloB0vPaAhHQNLw+NIClrN1fZQoaAZHQHI/xxtHhCNoB0vZaAhHQNLxBoXwb2l1fZQoaAZHQHGrRXnyNGVoB0vXaAhHQNLxE88DB/J1fZQoaAZHQHB8KWLP2PFoB0vkaAhHQNLxImZJCjV1fZQoaAZHQHJ/FV5rxiJoB00OAWgIR0DS8TPt8eCDdX2UKGgGR0Bui9WuHN5daAdL22gIR0DS8afzoUzsdX2UKGgGR0Byiz+VC5VfaAdL7WgIR0DS8bZxZMcqdX2UKGgGR0BwLuxZ+x4ZaAdL2WgIR0DS8cVnUUfxdX2UKGgGR0ByTQKD0163aAdLzmgIR0DS8dIM2FWXdX2UKGgGR0By3f9WIXTFaAdLx2gIR0DS8d7JDE3sdX2UKGgGR0By3vTQVsUJaAdLuWgIR0DS8etklNUPdX2UKGgGR0Bxx62Yv38GaAdL6WgIR0DS8fspEx7BdX2UKGgGR0BxESJfpljFaAdLzWgIR0DS8goiA2AHdX2UKGgGR0BxuSR/3FkyaAdN1AFoCEdA0vLq+i8Fp3V9lChoBkdAc0yyJKraNGgHS79oCEdA0vL+w+t8u3V9lChoBkdAceFNOM2m52gHS+toCEdA0vMVXC0ngHV9lChoBkdAcNeVHnU2DWgHS99oCEdA0vMo8XenAXV9lChoBkdAcdo0yP+4smgHS7xoCEdA0vM0cE/0NHV9lChoBkdAbsQZpBX0XmgHS9doCEdA0vNB1hsqKHV9lChoBkdAcSRqgh8pkWgHS/FoCEdA0vNQzV+ZxHV9lChoBkdAcTNfr8iwCGgHS8poCEdA0vNd08NhE3V9lChoBkdAcsblFMIu5GgHS7toCEdA0vNqR/ViF3V9lChoBkdAcrlLKV6eG2gHS9RoCEdA0vN3v1lGw3V9lChoBkdAcq8ews5GSmgHS/ZoCEdA0vPq4+KTCHV9lChoBkdAcSWK0UoKD2gHS/BoCEdA0vP5lYU343V9lChoBkdAcim3LFGXomgHS+5oCEdA0vQI7YChe3V9lChoBkdAcCJxOclPamgHS9FoCEdA0vQVx4IKMXV9lChoBkdAcqRwjt5UtWgHS7RoCEdA0vQiC7sfJXV9lChoBkdAb7Cadc0Lt2gHS8loCEdA0vQuwRoRI3V9lChoBkdAb5rffGdZq2gHS75oCEdA0vQ6LUCq63V9lChoBkdAcC/HVwxWUGgHS81oCEdA0vRGvf0mMXV9lChoBkdARCQP9UCJXWgHS5JoCEdA0vRPdjoZAXV9lChoBkfAOgFTzd1uBWgHS1toCEdA0vRVL26ClXV9lChoBkdAcnaf642CNGgHS9hoCEdA0vS/pEx7A3V9lChoBkdAIFWfChvitWgHS2JoCEdA0vTFw4KhMHV9lChoBkdAc6j85CF9KGgHS8NoCEdA0vTSE0BOpXV9lChoBkdAcPSNlyzXz2gHS8JoCEdA0vTeR8c+7nV9lChoBkdAcNGyXUpd8mgHS8ZoCEdA0vTrA80UGnV9lChoBkdAc+NNGmUGFGgHS/VoCEdA0vT6dGiHqXV9lChoBkdAcrQ/6fra/WgHS9loCEdA0vUIPDYRNHV9lChoBkdAc5gUyYXwb2gHS+toCEdA0vUW33YcvXV9lChoBkdAczNKP4mCy2gHS91oCEdA0vUl5XEIgXV9lChoBkdAcp9iXpnpS2gHS7ZoCEdA0vUxOkLx7XV9lChoBkdAcb4D2JzkqGgHS8toCEdA0vU90cOsk3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 48830, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6107fdc60ad35bb9d8a0f0f70a5c2f9f7377fbce0b14c3ea3e5c2141b6c23217
|
3 |
+
size 146793
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,32 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
-
"n_steps": 2048,
|
56 |
-
"gamma": 0.99,
|
57 |
-
"gae_lambda": 0.98,
|
58 |
-
"ent_coef": 0.01,
|
59 |
-
"vf_coef": 0.5,
|
60 |
-
"max_grad_norm": 0.5,
|
61 |
-
"batch_size": 64,
|
62 |
-
"n_epochs": 4,
|
63 |
-
"clip_range": {
|
64 |
-
":type:": "<class 'function'>",
|
65 |
-
":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTIyLTMwM2NmMzM3YmQ2Yz6UjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
-
},
|
67 |
-
"clip_range_vf": null,
|
68 |
-
"normalize_advantage": true,
|
69 |
-
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -84,7 +69,7 @@
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
-
":serialized:": "
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
@@ -92,8 +77,23 @@
|
|
92 |
"_np_random": null
|
93 |
},
|
94 |
"n_envs": 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e0bf5caeb00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e0bf5caeb90>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e0bf5caec20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e0bf5caecb0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e0bf5caed40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e0bf5caedd0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e0bf5caee60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e0bf5caeef0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e0bf5caef80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e0bf5caf010>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e0bf5caf0a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e0bf5caf130>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e0bf5c62ec0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 10000384,
|
25 |
+
"_total_timesteps": 10000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1711601556263014770,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAO1wTT4ebJ4/SZAfP15NGb+FNaM+pGeBPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -3.8399999999993994e-05,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOfkjgQ6IaMAWyUS7yMAXSUR0DS61hXlr/LdX2UKGgGR0ByQD5P/JeWaAdL22gIR0DS62ZlqagFdX2UKGgGR0Bvr6DVYp2EaAdLxWgIR0DS63QNx2jgdX2UKGgGR0ByNYNYr8R+aAdLs2gIR0DS6373/PxAdX2UKGgGR0BzIqS8rZrYaAdLtGgIR0DS64rlA/s3dX2UKGgGR0BygqteUpuuaAdLwWgIR0DS65aQyRCAdX2UKGgGR0BxBUoH9m6HaAdLt2gIR0DS66HlkpZwdX2UKGgGR0Bzc27pV0cPaAdL42gIR0DS7BhWCEpRdX2UKGgGR0Bwq+txMnJDaAdL42gIR0DS7Csmx+rmdX2UKGgGR0Bwz5G3F1jiaAdLv2gIR0DS7DrF0gbIdX2UKGgGR0BzDySDAaegaAdL42gIR0DS7EyKVII4dX2UKGgGR0Bz/dqCYkVvaAdL72gIR0DS7GAzwc5sdX2UKGgGR0Byhhlum78OaAdLv2gIR0DS7HBchTwVdX2UKGgGR0Bxpk6Oo5xSaAdLxmgIR0DS7IHhn8KpdX2UKGgGR0BxME71ZkkKaAdLw2gIR0DS7JOkDZDidX2UKGgGR0BvxWBg/keZaAdL1mgIR0DS7KDigkC4dX2UKGgGR0BxQ9I/Z/TcaAdL0GgIR0DS7K3YUWVNdX2UKGgGR0ByRNk6Lfk4aAdL52gIR0DS7RkCmuTzdX2UKGgGR0Btsze0ojOcaAdNCAFoCEdA0u0pqEeyRnV9lChoBkdAcXvw3HaN/GgHS/FoCEdA0u04+evpyXV9lChoBkdAdD5fra/RFGgHS91oCEdA0u1GiVjZtnV9lChoBkdAchbXw9aEBmgHS7poCEdA0u1SAS39aXV9lChoBkdAcrweWfK6nWgHS7hoCEdA0u1d47A+IXV9lChoBkdAcMMPmgam42gHS8FoCEdA0u1qBMSK33V9lChoBkdAcNSu8scyWWgHS8BoCEdA0u11+OOsDHV9lChoBkdAc1bHf/FR52gHS65oCEdA0u2AwiaAnXV9lChoBkdAcQmxSHdoFmgHS+NoCEdA0u3sGOuJUHV9lChoBkdAchO1qFh5PmgHS8hoCEdA0u34npSrHXV9lChoBkdAcQUu2qkuYmgHS+ZoCEdA0u4HAf+0gXV9lChoBkdAccQcYqG1yGgHS8loCEdA0u4TanrIHXV9lChoBkdAcMfFaB7NS2gHS9ZoCEdA0u4hPRArx3V9lChoBkdAc+mzVMEidWgHS/ZoCEdA0u4wlGPPs3V9lChoBkdAb/fU4rBj4GgHS8RoCEdA0u49E3sHB3V9lChoBkdAcgwEKVpsXWgHS95oCEdA0u5Kj2SMcnV9lChoBkdAcctk+HJtBWgHS8ZoCEdA0u5WuloDgnV9lChoBkdAcqpmXgLqlmgHS89oCEdA0u5j6mfoR3V9lChoBkdAcHiNBWxQi2gHS+hoCEdA0u7PzJZGKHV9lChoBkdAcfYs2vStvGgHS8ZoCEdA0u7caYNRWXV9lChoBkdAcT8pgkTpPmgHS91oCEdA0u7q4PwuunV9lChoBkdAco/MgU1yemgHS+FoCEdA0u745xzaK3V9lChoBkdAceu7OVxCIGgHS7loCEdA0u8Eg3tKI3V9lChoBkdAcp5O7g88tGgHS/xoCEdA0u8U4XXRPXV9lChoBkdAY+wwr1/UfGgHTegDaAhHQNLv3u+qR2d1fZQoaAZHQHOFKyv9tMxoB0vTaAhHQNLv7P3ztkZ1fZQoaAZHQHFdizsyBTZoB0u5aAhHQNLv+pVfeDZ1fZQoaAZHQHDDH05EMLFoB0vqaAhHQNLwCUP1+RZ1fZQoaAZHQHEH6vmozepoB0vdaAhHQNLwFuKwY+B1fZQoaAZHQHKhJCrtE5RoB0v3aAhHQNLwJllGwzN1fZQoaAZHQHGwFjurp7loB0vSaAhHQNLwNVNtZV51fZQoaAZHQG/hQk5ZKWdoB0vbaAhHQNLwQ8K1G9Z1fZQoaAZHQHHADnzQNTdoB0vBaAhHQNLwT2f02+B1fZQoaAZHQHIfjrRjSXtoB0u3aAhHQNLwuIVdonN1fZQoaAZHQHHA2qHXVb1oB0vLaAhHQNLwxM+zMRp1fZQoaAZHQHIt/LHMlkZoB0u9aAhHQNLw0MfFJg91fZQoaAZHQHGt4oE0SAZoB0vbaAhHQNLw3lYMfA91fZQoaAZHQHI8H2ys0YVoB0vMaAhHQNLw62CmMwV1fZQoaAZHQHAD82eg+QloB0vPaAhHQNLw+NIClrN1fZQoaAZHQHI/xxtHhCNoB0vZaAhHQNLxBoXwb2l1fZQoaAZHQHGrRXnyNGVoB0vXaAhHQNLxE88DB/J1fZQoaAZHQHB8KWLP2PFoB0vkaAhHQNLxImZJCjV1fZQoaAZHQHJ/FV5rxiJoB00OAWgIR0DS8TPt8eCDdX2UKGgGR0Bui9WuHN5daAdL22gIR0DS8afzoUzsdX2UKGgGR0Byiz+VC5VfaAdL7WgIR0DS8bZxZMcqdX2UKGgGR0BwLuxZ+x4ZaAdL2WgIR0DS8cVnUUfxdX2UKGgGR0ByTQKD0163aAdLzmgIR0DS8dIM2FWXdX2UKGgGR0By3f9WIXTFaAdLx2gIR0DS8d7JDE3sdX2UKGgGR0By3vTQVsUJaAdLuWgIR0DS8etklNUPdX2UKGgGR0Bxx62Yv38GaAdL6WgIR0DS8fspEx7BdX2UKGgGR0BxESJfpljFaAdLzWgIR0DS8goiA2AHdX2UKGgGR0BxuSR/3FkyaAdN1AFoCEdA0vLq+i8Fp3V9lChoBkdAc0yyJKraNGgHS79oCEdA0vL+w+t8u3V9lChoBkdAceFNOM2m52gHS+toCEdA0vMVXC0ngHV9lChoBkdAcNeVHnU2DWgHS99oCEdA0vMo8XenAXV9lChoBkdAcdo0yP+4smgHS7xoCEdA0vM0cE/0NHV9lChoBkdAbsQZpBX0XmgHS9doCEdA0vNB1hsqKHV9lChoBkdAcSRqgh8pkWgHS/FoCEdA0vNQzV+ZxHV9lChoBkdAcTNfr8iwCGgHS8poCEdA0vNd08NhE3V9lChoBkdAcsblFMIu5GgHS7toCEdA0vNqR/ViF3V9lChoBkdAcrlLKV6eG2gHS9RoCEdA0vN3v1lGw3V9lChoBkdAcq8ews5GSmgHS/ZoCEdA0vPq4+KTCHV9lChoBkdAcSWK0UoKD2gHS/BoCEdA0vP5lYU343V9lChoBkdAcim3LFGXomgHS+5oCEdA0vQI7YChe3V9lChoBkdAcCJxOclPamgHS9FoCEdA0vQVx4IKMXV9lChoBkdAcqRwjt5UtWgHS7RoCEdA0vQiC7sfJXV9lChoBkdAb7Cadc0Lt2gHS8loCEdA0vQuwRoRI3V9lChoBkdAb5rffGdZq2gHS75oCEdA0vQ6LUCq63V9lChoBkdAcC/HVwxWUGgHS81oCEdA0vRGvf0mMXV9lChoBkdARCQP9UCJXWgHS5JoCEdA0vRPdjoZAXV9lChoBkfAOgFTzd1uBWgHS1toCEdA0vRVL26ClXV9lChoBkdAcnaf642CNGgHS9hoCEdA0vS/pEx7A3V9lChoBkdAIFWfChvitWgHS2JoCEdA0vTFw4KhMHV9lChoBkdAc6j85CF9KGgHS8NoCEdA0vTSE0BOpXV9lChoBkdAcPSNlyzXz2gHS8JoCEdA0vTeR8c+7nV9lChoBkdAcNGyXUpd8mgHS8ZoCEdA0vTrA80UGnV9lChoBkdAc+NNGmUGFGgHS/VoCEdA0vT6dGiHqXV9lChoBkdAcrQ/6fra/WgHS9loCEdA0vUIPDYRNHV9lChoBkdAc5gUyYXwb2gHS+toCEdA0vUW33YcvXV9lChoBkdAczNKP4mCy2gHS91oCEdA0vUl5XEIgXV9lChoBkdAcp9iXpnpS2gHS7ZoCEdA0vUxOkLx7XV9lChoBkdAcb4D2JzkqGgHS8toCEdA0vU90cOsk3VlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 48830,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 1,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:987421f3b11a5ae88f5e31d5313026ed176dba6ca66ae7813782971c118c9b63
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de300d5253884850f23ab1f6d07a80ecc5fa87890dc8aea396d9cfa07bb5e7aa
|
3 |
+
size 43634
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.2.1+cu121
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.25.2
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 287.55589017257483, "std_reward": 15.671291036950292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-28T10:20:10.613594"}
|