wenkai's picture
Upload 22 files
7c8fc75 verified
raw
history blame
8.98 kB
from collections import deque, Counter
import warnings
import pandas as pd
import numpy as np
from xml.etree import ElementTree as ET
import math
BIOLOGICAL_PROCESS = 'GO:0008150'
MOLECULAR_FUNCTION = 'GO:0003674'
CELLULAR_COMPONENT = 'GO:0005575'
FUNC_DICT = {
'cc': CELLULAR_COMPONENT,
'mf': MOLECULAR_FUNCTION,
'bp': BIOLOGICAL_PROCESS}
NAMESPACES = {
'cc': 'cellular_component',
'mf': 'molecular_function',
'bp': 'biological_process'
}
EXP_CODES = set([
'EXP', 'IDA', 'IPI', 'IMP', 'IGI', 'IEP', 'TAS', 'IC',
'HTP', 'HDA', 'HMP', 'HGI', 'HEP'])
# CAFA4 Targets
CAFA_TARGETS = set([
'287', '3702', '4577', '6239', '7227', '7955', '9606', '9823', '10090',
'10116', '44689', '83333', '99287', '226900', '243273', '284812', '559292'])
def is_cafa_target(org):
return org in CAFA_TARGETS
def is_exp_code(code):
return code in EXP_CODES
def get_goplus_defs(filename='data/definitions.txt'):
plus_defs = {}
with open(filename) as f:
for line in f:
line = line.strip()
go_id, definition = line.split(': ')
go_id = go_id.replace('_', ':')
definition = definition.replace('_', ':')
plus_defs[go_id] = set(definition.split(' and '))
return plus_defs
class Ontology(object):
def __init__(self, filename='data/go.obo', with_rels=False):
self.ont = self.load(filename, with_rels)
self.ic = None
self.ic_norm = 0.0
def has_term(self, term_id):
return term_id in self.ont
def get_term(self, term_id):
if self.has_term(term_id):
return self.ont[term_id]
return None
def calculate_ic(self, annots):
cnt = Counter()
for x in annots:
cnt.update(x)
self.ic = {}
for go_id, n in cnt.items():
parents = self.get_parents(go_id)
if len(parents) == 0:
min_n = n
else:
min_n = min([cnt[x] for x in parents])
self.ic[go_id] = math.log(min_n / n, 2)
self.ic_norm = max(self.ic_norm, self.ic[go_id])
def get_ic(self, go_id):
if self.ic is None:
raise Exception('Not yet calculated')
if go_id not in self.ic:
return 0.0
return self.ic[go_id]
def get_norm_ic(self, go_id):
return self.get_ic(go_id) / self.ic_norm
def load(self, filename, with_rels):
ont = dict()
obj = None
with open(filename, 'r') as f:
for line in f:
line = line.strip()
if not line:
continue
if line == '[Term]':
if obj is not None:
ont[obj['id']] = obj
obj = dict()
obj['is_a'] = list()
obj['part_of'] = list()
obj['regulates'] = list()
obj['alt_ids'] = list()
obj['is_obsolete'] = False
continue
elif line == '[Typedef]':
if obj is not None:
ont[obj['id']] = obj
obj = None
else:
if obj is None:
continue
l = line.split(": ")
if l[0] == 'id':
obj['id'] = l[1]
elif l[0] == 'alt_id':
obj['alt_ids'].append(l[1])
elif l[0] == 'namespace':
obj['namespace'] = l[1]
elif l[0] == 'is_a':
obj['is_a'].append(l[1].split(' ! ')[0])
elif with_rels and l[0] == 'relationship':
it = l[1].split()
# add all types of relationships
obj['is_a'].append(it[1])
elif l[0] == 'name':
obj['name'] = l[1]
elif l[0] == 'is_obsolete' and l[1] == 'true':
obj['is_obsolete'] = True
if obj is not None:
ont[obj['id']] = obj
for term_id in list(ont.keys()):
for t_id in ont[term_id]['alt_ids']:
ont[t_id] = ont[term_id]
if ont[term_id]['is_obsolete']:
del ont[term_id]
for term_id, val in ont.items():
if 'children' not in val:
val['children'] = set()
for p_id in val['is_a']:
if p_id in ont:
if 'children' not in ont[p_id]:
ont[p_id]['children'] = set()
ont[p_id]['children'].add(term_id)
return ont
def get_anchestors(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
q = deque()
q.append(term_id)
while (len(q) > 0):
t_id = q.popleft()
if t_id not in term_set:
term_set.add(t_id)
for parent_id in self.ont[t_id]['is_a']:
if parent_id in self.ont:
q.append(parent_id)
return term_set
def get_prop_terms(self, terms):
prop_terms = set()
for term_id in terms:
prop_terms |= self.get_anchestors(term_id)
return prop_terms
def get_parents(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
for parent_id in self.ont[term_id]['is_a']:
if parent_id in self.ont:
term_set.add(parent_id)
return term_set
def get_namespace_terms(self, namespace):
terms = set()
for go_id, obj in self.ont.items():
if obj['namespace'] == namespace:
terms.add(go_id)
return terms
def get_namespace(self, term_id):
return self.ont[term_id]['namespace']
def get_term_set(self, term_id):
if term_id not in self.ont:
return set()
term_set = set()
q = deque()
q.append(term_id)
while len(q) > 0:
t_id = q.popleft()
if t_id not in term_set:
term_set.add(t_id)
for ch_id in self.ont[t_id]['children']:
q.append(ch_id)
return term_set
def read_fasta(filename):
seqs = list()
info = list()
seq = ''
inf = ''
with open(filename, 'r') as f:
for line in f:
line = line.strip()
if line.startswith('>'):
if seq != '':
seqs.append(seq)
info.append(inf)
seq = ''
inf = line[1:].split()[0]
else:
seq += line
seqs.append(seq)
info.append(inf)
return info, seqs
class DataGenerator(object):
def __init__(self, batch_size, is_sparse=False):
self.batch_size = batch_size
self.is_sparse = is_sparse
def fit(self, inputs, targets=None):
self.start = 0
self.inputs = inputs
self.targets = targets
if isinstance(self.inputs, tuple) or isinstance(self.inputs, list):
self.size = self.inputs[0].shape[0]
else:
self.size = self.inputs.shape[0]
self.has_targets = targets is not None
def __next__(self):
return self.next()
def reset(self):
self.start = 0
def next(self):
if self.start < self.size:
batch_index = np.arange(
self.start, min(self.size, self.start + self.batch_size))
if isinstance(self.inputs, tuple) or isinstance(self.inputs, list):
res_inputs = []
for inp in self.inputs:
if self.is_sparse:
res_inputs.append(
inp[batch_index, :].toarray())
else:
res_inputs.append(inp[batch_index, :])
else:
if self.is_sparse:
res_inputs = self.inputs[batch_index, :].toarray()
else:
res_inputs = self.inputs[batch_index, :]
self.start += self.batch_size
if self.has_targets:
if self.is_sparse:
labels = self.targets[batch_index, :].toarray()
else:
labels = self.targets[batch_index, :]
return (res_inputs, labels)
return res_inputs
else:
self.reset()
return self.next()