|
|
|
import torch.nn as nn
|
|
|
|
from .registry import ACTIVATION_LAYERS
|
|
|
|
|
|
@ACTIVATION_LAYERS.register_module()
|
|
class HSigmoid(nn.Module):
|
|
"""Hard Sigmoid Module. Apply the hard sigmoid function:
|
|
Hsigmoid(x) = min(max((x + bias) / divisor, min_value), max_value)
|
|
Default: Hsigmoid(x) = min(max((x + 1) / 2, 0), 1)
|
|
|
|
Args:
|
|
bias (float): Bias of the input feature map. Default: 1.0.
|
|
divisor (float): Divisor of the input feature map. Default: 2.0.
|
|
min_value (float): Lower bound value. Default: 0.0.
|
|
max_value (float): Upper bound value. Default: 1.0.
|
|
|
|
Returns:
|
|
Tensor: The output tensor.
|
|
"""
|
|
|
|
def __init__(self, bias=1.0, divisor=2.0, min_value=0.0, max_value=1.0):
|
|
super(HSigmoid, self).__init__()
|
|
self.bias = bias
|
|
self.divisor = divisor
|
|
assert self.divisor != 0
|
|
self.min_value = min_value
|
|
self.max_value = max_value
|
|
|
|
def forward(self, x):
|
|
x = (x + self.bias) / self.divisor
|
|
|
|
return x.clamp_(self.min_value, self.max_value)
|
|
|