|
|
|
import logging
|
|
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint as cp
|
|
|
|
from .utils import constant_init, kaiming_init
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, dilation=1):
|
|
"""3x3 convolution with padding."""
|
|
return nn.Conv2d(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=dilation,
|
|
dilation=dilation,
|
|
bias=False)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self,
|
|
inplanes,
|
|
planes,
|
|
stride=1,
|
|
dilation=1,
|
|
downsample=None,
|
|
style='pytorch',
|
|
with_cp=False):
|
|
super(BasicBlock, self).__init__()
|
|
assert style in ['pytorch', 'caffe']
|
|
self.conv1 = conv3x3(inplanes, planes, stride, dilation)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = conv3x3(planes, planes)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
assert not with_cp
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self,
|
|
inplanes,
|
|
planes,
|
|
stride=1,
|
|
dilation=1,
|
|
downsample=None,
|
|
style='pytorch',
|
|
with_cp=False):
|
|
"""Bottleneck block.
|
|
|
|
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
|
|
it is "caffe", the stride-two layer is the first 1x1 conv layer.
|
|
"""
|
|
super(Bottleneck, self).__init__()
|
|
assert style in ['pytorch', 'caffe']
|
|
if style == 'pytorch':
|
|
conv1_stride = 1
|
|
conv2_stride = stride
|
|
else:
|
|
conv1_stride = stride
|
|
conv2_stride = 1
|
|
self.conv1 = nn.Conv2d(
|
|
inplanes, planes, kernel_size=1, stride=conv1_stride, bias=False)
|
|
self.conv2 = nn.Conv2d(
|
|
planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=conv2_stride,
|
|
padding=dilation,
|
|
dilation=dilation,
|
|
bias=False)
|
|
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(
|
|
planes, planes * self.expansion, kernel_size=1, bias=False)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
self.with_cp = with_cp
|
|
|
|
def forward(self, x):
|
|
|
|
def _inner_forward(x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
|
|
return out
|
|
|
|
if self.with_cp and x.requires_grad:
|
|
out = cp.checkpoint(_inner_forward, x)
|
|
else:
|
|
out = _inner_forward(x)
|
|
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
def make_res_layer(block,
|
|
inplanes,
|
|
planes,
|
|
blocks,
|
|
stride=1,
|
|
dilation=1,
|
|
style='pytorch',
|
|
with_cp=False):
|
|
downsample = None
|
|
if stride != 1 or inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(
|
|
inplanes,
|
|
planes * block.expansion,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(
|
|
block(
|
|
inplanes,
|
|
planes,
|
|
stride,
|
|
dilation,
|
|
downsample,
|
|
style=style,
|
|
with_cp=with_cp))
|
|
inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(
|
|
block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
"""ResNet backbone.
|
|
|
|
Args:
|
|
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
|
|
num_stages (int): Resnet stages, normally 4.
|
|
strides (Sequence[int]): Strides of the first block of each stage.
|
|
dilations (Sequence[int]): Dilation of each stage.
|
|
out_indices (Sequence[int]): Output from which stages.
|
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
|
|
layer is the 3x3 conv layer, otherwise the stride-two layer is
|
|
the first 1x1 conv layer.
|
|
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
|
|
not freezing any parameters.
|
|
bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
|
|
running stats (mean and var).
|
|
bn_frozen (bool): Whether to freeze weight and bias of BN layers.
|
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
|
memory while slowing down the training speed.
|
|
"""
|
|
|
|
arch_settings = {
|
|
18: (BasicBlock, (2, 2, 2, 2)),
|
|
34: (BasicBlock, (3, 4, 6, 3)),
|
|
50: (Bottleneck, (3, 4, 6, 3)),
|
|
101: (Bottleneck, (3, 4, 23, 3)),
|
|
152: (Bottleneck, (3, 8, 36, 3))
|
|
}
|
|
|
|
def __init__(self,
|
|
depth,
|
|
num_stages=4,
|
|
strides=(1, 2, 2, 2),
|
|
dilations=(1, 1, 1, 1),
|
|
out_indices=(0, 1, 2, 3),
|
|
style='pytorch',
|
|
frozen_stages=-1,
|
|
bn_eval=True,
|
|
bn_frozen=False,
|
|
with_cp=False):
|
|
super(ResNet, self).__init__()
|
|
if depth not in self.arch_settings:
|
|
raise KeyError(f'invalid depth {depth} for resnet')
|
|
assert num_stages >= 1 and num_stages <= 4
|
|
block, stage_blocks = self.arch_settings[depth]
|
|
stage_blocks = stage_blocks[:num_stages]
|
|
assert len(strides) == len(dilations) == num_stages
|
|
assert max(out_indices) < num_stages
|
|
|
|
self.out_indices = out_indices
|
|
self.style = style
|
|
self.frozen_stages = frozen_stages
|
|
self.bn_eval = bn_eval
|
|
self.bn_frozen = bn_frozen
|
|
self.with_cp = with_cp
|
|
|
|
self.inplanes = 64
|
|
self.conv1 = nn.Conv2d(
|
|
3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
|
|
self.res_layers = []
|
|
for i, num_blocks in enumerate(stage_blocks):
|
|
stride = strides[i]
|
|
dilation = dilations[i]
|
|
planes = 64 * 2**i
|
|
res_layer = make_res_layer(
|
|
block,
|
|
self.inplanes,
|
|
planes,
|
|
num_blocks,
|
|
stride=stride,
|
|
dilation=dilation,
|
|
style=self.style,
|
|
with_cp=with_cp)
|
|
self.inplanes = planes * block.expansion
|
|
layer_name = f'layer{i + 1}'
|
|
self.add_module(layer_name, res_layer)
|
|
self.res_layers.append(layer_name)
|
|
|
|
self.feat_dim = block.expansion * 64 * 2**(len(stage_blocks) - 1)
|
|
|
|
def init_weights(self, pretrained=None):
|
|
if isinstance(pretrained, str):
|
|
logger = logging.getLogger()
|
|
from ..runner import load_checkpoint
|
|
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
|
elif pretrained is None:
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
kaiming_init(m)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
constant_init(m, 1)
|
|
else:
|
|
raise TypeError('pretrained must be a str or None')
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
outs = []
|
|
for i, layer_name in enumerate(self.res_layers):
|
|
res_layer = getattr(self, layer_name)
|
|
x = res_layer(x)
|
|
if i in self.out_indices:
|
|
outs.append(x)
|
|
if len(outs) == 1:
|
|
return outs[0]
|
|
else:
|
|
return tuple(outs)
|
|
|
|
def train(self, mode=True):
|
|
super(ResNet, self).train(mode)
|
|
if self.bn_eval:
|
|
for m in self.modules():
|
|
if isinstance(m, nn.BatchNorm2d):
|
|
m.eval()
|
|
if self.bn_frozen:
|
|
for params in m.parameters():
|
|
params.requires_grad = False
|
|
if mode and self.frozen_stages >= 0:
|
|
for param in self.conv1.parameters():
|
|
param.requires_grad = False
|
|
for param in self.bn1.parameters():
|
|
param.requires_grad = False
|
|
self.bn1.eval()
|
|
self.bn1.weight.requires_grad = False
|
|
self.bn1.bias.requires_grad = False
|
|
for i in range(1, self.frozen_stages + 1):
|
|
mod = getattr(self, f'layer{i}')
|
|
mod.eval()
|
|
for param in mod.parameters():
|
|
param.requires_grad = False
|
|
|