|
|
|
import logging
|
|
|
|
import torch.nn as nn
|
|
|
|
from .utils import constant_init, kaiming_init, normal_init
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, dilation=1):
|
|
"""3x3 convolution with padding."""
|
|
return nn.Conv2d(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=3,
|
|
padding=dilation,
|
|
dilation=dilation)
|
|
|
|
|
|
def make_vgg_layer(inplanes,
|
|
planes,
|
|
num_blocks,
|
|
dilation=1,
|
|
with_bn=False,
|
|
ceil_mode=False):
|
|
layers = []
|
|
for _ in range(num_blocks):
|
|
layers.append(conv3x3(inplanes, planes, dilation))
|
|
if with_bn:
|
|
layers.append(nn.BatchNorm2d(planes))
|
|
layers.append(nn.ReLU(inplace=True))
|
|
inplanes = planes
|
|
layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode))
|
|
|
|
return layers
|
|
|
|
|
|
class VGG(nn.Module):
|
|
"""VGG backbone.
|
|
|
|
Args:
|
|
depth (int): Depth of vgg, from {11, 13, 16, 19}.
|
|
with_bn (bool): Use BatchNorm or not.
|
|
num_classes (int): number of classes for classification.
|
|
num_stages (int): VGG stages, normally 5.
|
|
dilations (Sequence[int]): Dilation of each stage.
|
|
out_indices (Sequence[int]): Output from which stages.
|
|
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
|
|
not freezing any parameters.
|
|
bn_eval (bool): Whether to set BN layers as eval mode, namely, freeze
|
|
running stats (mean and var).
|
|
bn_frozen (bool): Whether to freeze weight and bias of BN layers.
|
|
"""
|
|
|
|
arch_settings = {
|
|
11: (1, 1, 2, 2, 2),
|
|
13: (2, 2, 2, 2, 2),
|
|
16: (2, 2, 3, 3, 3),
|
|
19: (2, 2, 4, 4, 4)
|
|
}
|
|
|
|
def __init__(self,
|
|
depth,
|
|
with_bn=False,
|
|
num_classes=-1,
|
|
num_stages=5,
|
|
dilations=(1, 1, 1, 1, 1),
|
|
out_indices=(0, 1, 2, 3, 4),
|
|
frozen_stages=-1,
|
|
bn_eval=True,
|
|
bn_frozen=False,
|
|
ceil_mode=False,
|
|
with_last_pool=True):
|
|
super(VGG, self).__init__()
|
|
if depth not in self.arch_settings:
|
|
raise KeyError(f'invalid depth {depth} for vgg')
|
|
assert num_stages >= 1 and num_stages <= 5
|
|
stage_blocks = self.arch_settings[depth]
|
|
self.stage_blocks = stage_blocks[:num_stages]
|
|
assert len(dilations) == num_stages
|
|
assert max(out_indices) <= num_stages
|
|
|
|
self.num_classes = num_classes
|
|
self.out_indices = out_indices
|
|
self.frozen_stages = frozen_stages
|
|
self.bn_eval = bn_eval
|
|
self.bn_frozen = bn_frozen
|
|
|
|
self.inplanes = 3
|
|
start_idx = 0
|
|
vgg_layers = []
|
|
self.range_sub_modules = []
|
|
for i, num_blocks in enumerate(self.stage_blocks):
|
|
num_modules = num_blocks * (2 + with_bn) + 1
|
|
end_idx = start_idx + num_modules
|
|
dilation = dilations[i]
|
|
planes = 64 * 2**i if i < 4 else 512
|
|
vgg_layer = make_vgg_layer(
|
|
self.inplanes,
|
|
planes,
|
|
num_blocks,
|
|
dilation=dilation,
|
|
with_bn=with_bn,
|
|
ceil_mode=ceil_mode)
|
|
vgg_layers.extend(vgg_layer)
|
|
self.inplanes = planes
|
|
self.range_sub_modules.append([start_idx, end_idx])
|
|
start_idx = end_idx
|
|
if not with_last_pool:
|
|
vgg_layers.pop(-1)
|
|
self.range_sub_modules[-1][1] -= 1
|
|
self.module_name = 'features'
|
|
self.add_module(self.module_name, nn.Sequential(*vgg_layers))
|
|
|
|
if self.num_classes > 0:
|
|
self.classifier = nn.Sequential(
|
|
nn.Linear(512 * 7 * 7, 4096),
|
|
nn.ReLU(True),
|
|
nn.Dropout(),
|
|
nn.Linear(4096, 4096),
|
|
nn.ReLU(True),
|
|
nn.Dropout(),
|
|
nn.Linear(4096, num_classes),
|
|
)
|
|
|
|
def init_weights(self, pretrained=None):
|
|
if isinstance(pretrained, str):
|
|
logger = logging.getLogger()
|
|
from ..runner import load_checkpoint
|
|
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
|
elif pretrained is None:
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
kaiming_init(m)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
constant_init(m, 1)
|
|
elif isinstance(m, nn.Linear):
|
|
normal_init(m, std=0.01)
|
|
else:
|
|
raise TypeError('pretrained must be a str or None')
|
|
|
|
def forward(self, x):
|
|
outs = []
|
|
vgg_layers = getattr(self, self.module_name)
|
|
for i in range(len(self.stage_blocks)):
|
|
for j in range(*self.range_sub_modules[i]):
|
|
vgg_layer = vgg_layers[j]
|
|
x = vgg_layer(x)
|
|
if i in self.out_indices:
|
|
outs.append(x)
|
|
if self.num_classes > 0:
|
|
x = x.view(x.size(0), -1)
|
|
x = self.classifier(x)
|
|
outs.append(x)
|
|
if len(outs) == 1:
|
|
return outs[0]
|
|
else:
|
|
return tuple(outs)
|
|
|
|
def train(self, mode=True):
|
|
super(VGG, self).train(mode)
|
|
if self.bn_eval:
|
|
for m in self.modules():
|
|
if isinstance(m, nn.BatchNorm2d):
|
|
m.eval()
|
|
if self.bn_frozen:
|
|
for params in m.parameters():
|
|
params.requires_grad = False
|
|
vgg_layers = getattr(self, self.module_name)
|
|
if mode and self.frozen_stages >= 0:
|
|
for i in range(self.frozen_stages):
|
|
for j in range(*self.range_sub_modules[i]):
|
|
mod = vgg_layers[j]
|
|
mod.eval()
|
|
for param in mod.parameters():
|
|
param.requires_grad = False
|
|
|