|
|
|
import torch
|
|
from torch.autograd import Function
|
|
|
|
from ..utils import ext_loader
|
|
|
|
ext_module = ext_loader.load_ext('_ext', ['ball_query_forward'])
|
|
|
|
|
|
class BallQuery(Function):
|
|
"""Find nearby points in spherical space."""
|
|
|
|
@staticmethod
|
|
def forward(ctx, min_radius: float, max_radius: float, sample_num: int,
|
|
xyz: torch.Tensor, center_xyz: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
min_radius (float): minimum radius of the balls.
|
|
max_radius (float): maximum radius of the balls.
|
|
sample_num (int): maximum number of features in the balls.
|
|
xyz (Tensor): (B, N, 3) xyz coordinates of the features.
|
|
center_xyz (Tensor): (B, npoint, 3) centers of the ball query.
|
|
|
|
Returns:
|
|
Tensor: (B, npoint, nsample) tensor with the indices of
|
|
the features that form the query balls.
|
|
"""
|
|
assert center_xyz.is_contiguous()
|
|
assert xyz.is_contiguous()
|
|
assert min_radius < max_radius
|
|
|
|
B, N, _ = xyz.size()
|
|
npoint = center_xyz.size(1)
|
|
idx = xyz.new_zeros(B, npoint, sample_num, dtype=torch.int)
|
|
|
|
ext_module.ball_query_forward(
|
|
center_xyz,
|
|
xyz,
|
|
idx,
|
|
b=B,
|
|
n=N,
|
|
m=npoint,
|
|
min_radius=min_radius,
|
|
max_radius=max_radius,
|
|
nsample=sample_num)
|
|
if torch.__version__ != 'parrots':
|
|
ctx.mark_non_differentiable(idx)
|
|
return idx
|
|
|
|
@staticmethod
|
|
def backward(ctx, a=None):
|
|
return None, None, None, None
|
|
|
|
|
|
ball_query = BallQuery.apply
|
|
|