|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
from torch.autograd import Function
|
|
from torch.nn import functional as F
|
|
|
|
from annotator.uniformer.mmcv.utils import to_2tuple
|
|
from ..utils import ext_loader
|
|
|
|
upfirdn2d_ext = ext_loader.load_ext('_ext', ['upfirdn2d'])
|
|
|
|
|
|
class UpFirDn2dBackward(Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
|
|
in_size, out_size):
|
|
|
|
up_x, up_y = up
|
|
down_x, down_y = down
|
|
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
|
|
|
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
|
|
|
grad_input = upfirdn2d_ext.upfirdn2d(
|
|
grad_output,
|
|
grad_kernel,
|
|
up_x=down_x,
|
|
up_y=down_y,
|
|
down_x=up_x,
|
|
down_y=up_y,
|
|
pad_x0=g_pad_x0,
|
|
pad_x1=g_pad_x1,
|
|
pad_y0=g_pad_y0,
|
|
pad_y1=g_pad_y1)
|
|
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
|
|
in_size[3])
|
|
|
|
ctx.save_for_backward(kernel)
|
|
|
|
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
|
|
|
ctx.up_x = up_x
|
|
ctx.up_y = up_y
|
|
ctx.down_x = down_x
|
|
ctx.down_y = down_y
|
|
ctx.pad_x0 = pad_x0
|
|
ctx.pad_x1 = pad_x1
|
|
ctx.pad_y0 = pad_y0
|
|
ctx.pad_y1 = pad_y1
|
|
ctx.in_size = in_size
|
|
ctx.out_size = out_size
|
|
|
|
return grad_input
|
|
|
|
@staticmethod
|
|
def backward(ctx, gradgrad_input):
|
|
kernel, = ctx.saved_tensors
|
|
|
|
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2],
|
|
ctx.in_size[3], 1)
|
|
|
|
gradgrad_out = upfirdn2d_ext.upfirdn2d(
|
|
gradgrad_input,
|
|
kernel,
|
|
up_x=ctx.up_x,
|
|
up_y=ctx.up_y,
|
|
down_x=ctx.down_x,
|
|
down_y=ctx.down_y,
|
|
pad_x0=ctx.pad_x0,
|
|
pad_x1=ctx.pad_x1,
|
|
pad_y0=ctx.pad_y0,
|
|
pad_y1=ctx.pad_y1)
|
|
|
|
|
|
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
|
|
ctx.out_size[0], ctx.out_size[1])
|
|
|
|
return gradgrad_out, None, None, None, None, None, None, None, None
|
|
|
|
|
|
class UpFirDn2d(Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, input, kernel, up, down, pad):
|
|
up_x, up_y = up
|
|
down_x, down_y = down
|
|
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
|
|
|
kernel_h, kernel_w = kernel.shape
|
|
batch, channel, in_h, in_w = input.shape
|
|
ctx.in_size = input.shape
|
|
|
|
input = input.reshape(-1, in_h, in_w, 1)
|
|
|
|
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
|
ctx.out_size = (out_h, out_w)
|
|
|
|
ctx.up = (up_x, up_y)
|
|
ctx.down = (down_x, down_y)
|
|
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
|
|
|
g_pad_x0 = kernel_w - pad_x0 - 1
|
|
g_pad_y0 = kernel_h - pad_y0 - 1
|
|
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
|
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
|
|
|
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
|
|
|
out = upfirdn2d_ext.upfirdn2d(
|
|
input,
|
|
kernel,
|
|
up_x=up_x,
|
|
up_y=up_y,
|
|
down_x=down_x,
|
|
down_y=down_y,
|
|
pad_x0=pad_x0,
|
|
pad_x1=pad_x1,
|
|
pad_y0=pad_y0,
|
|
pad_y1=pad_y1)
|
|
|
|
out = out.view(-1, channel, out_h, out_w)
|
|
|
|
return out
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
kernel, grad_kernel = ctx.saved_tensors
|
|
|
|
grad_input = UpFirDn2dBackward.apply(
|
|
grad_output,
|
|
kernel,
|
|
grad_kernel,
|
|
ctx.up,
|
|
ctx.down,
|
|
ctx.pad,
|
|
ctx.g_pad,
|
|
ctx.in_size,
|
|
ctx.out_size,
|
|
)
|
|
|
|
return grad_input, None, None, None, None
|
|
|
|
|
|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
|
"""UpFRIDn for 2d features.
|
|
|
|
UpFIRDn is short for upsample, apply FIR filter and downsample. More
|
|
details can be found in:
|
|
https://www.mathworks.com/help/signal/ref/upfirdn.html
|
|
|
|
Args:
|
|
input (Tensor): Tensor with shape of (n, c, h, w).
|
|
kernel (Tensor): Filter kernel.
|
|
up (int | tuple[int], optional): Upsampling factor. If given a number,
|
|
we will use this factor for the both height and width side.
|
|
Defaults to 1.
|
|
down (int | tuple[int], optional): Downsampling factor. If given a
|
|
number, we will use this factor for the both height and width side.
|
|
Defaults to 1.
|
|
pad (tuple[int], optional): Padding for tensors, (x_pad, y_pad) or
|
|
(x_pad_0, x_pad_1, y_pad_0, y_pad_1). Defaults to (0, 0).
|
|
|
|
Returns:
|
|
Tensor: Tensor after UpFIRDn.
|
|
"""
|
|
if input.device.type == 'cpu':
|
|
if len(pad) == 2:
|
|
pad = (pad[0], pad[1], pad[0], pad[1])
|
|
|
|
up = to_2tuple(up)
|
|
|
|
down = to_2tuple(down)
|
|
|
|
out = upfirdn2d_native(input, kernel, up[0], up[1], down[0], down[1],
|
|
pad[0], pad[1], pad[2], pad[3])
|
|
else:
|
|
_up = to_2tuple(up)
|
|
|
|
_down = to_2tuple(down)
|
|
|
|
if len(pad) == 4:
|
|
_pad = pad
|
|
elif len(pad) == 2:
|
|
_pad = (pad[0], pad[1], pad[0], pad[1])
|
|
|
|
out = UpFirDn2d.apply(input, kernel, _up, _down, _pad)
|
|
|
|
return out
|
|
|
|
|
|
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1,
|
|
pad_y0, pad_y1):
|
|
_, channel, in_h, in_w = input.shape
|
|
input = input.reshape(-1, in_h, in_w, 1)
|
|
|
|
_, in_h, in_w, minor = input.shape
|
|
kernel_h, kernel_w = kernel.shape
|
|
|
|
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
|
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
|
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
|
|
|
out = F.pad(
|
|
out,
|
|
[0, 0,
|
|
max(pad_x0, 0),
|
|
max(pad_x1, 0),
|
|
max(pad_y0, 0),
|
|
max(pad_y1, 0)])
|
|
out = out[:,
|
|
max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0),
|
|
max(-pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :, ]
|
|
|
|
out = out.permute(0, 3, 1, 2)
|
|
out = out.reshape(
|
|
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
|
out = F.conv2d(out, w)
|
|
out = out.reshape(
|
|
-1,
|
|
minor,
|
|
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
|
)
|
|
out = out.permute(0, 2, 3, 1)
|
|
out = out[:, ::down_y, ::down_x, :]
|
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
|
|
|
return out.view(-1, channel, out_h, out_w)
|
|
|