|
|
|
import copy
|
|
import warnings
|
|
from abc import ABCMeta
|
|
from collections import defaultdict
|
|
from logging import FileHandler
|
|
|
|
import torch.nn as nn
|
|
|
|
from annotator.uniformer.mmcv.runner.dist_utils import master_only
|
|
from annotator.uniformer.mmcv.utils.logging import get_logger, logger_initialized, print_log
|
|
|
|
|
|
class BaseModule(nn.Module, metaclass=ABCMeta):
|
|
"""Base module for all modules in openmmlab.
|
|
|
|
``BaseModule`` is a wrapper of ``torch.nn.Module`` with additional
|
|
functionality of parameter initialization. Compared with
|
|
``torch.nn.Module``, ``BaseModule`` mainly adds three attributes.
|
|
|
|
- ``init_cfg``: the config to control the initialization.
|
|
- ``init_weights``: The function of parameter
|
|
initialization and recording initialization
|
|
information.
|
|
- ``_params_init_info``: Used to track the parameter
|
|
initialization information. This attribute only
|
|
exists during executing the ``init_weights``.
|
|
|
|
Args:
|
|
init_cfg (dict, optional): Initialization config dict.
|
|
"""
|
|
|
|
def __init__(self, init_cfg=None):
|
|
"""Initialize BaseModule, inherited from `torch.nn.Module`"""
|
|
|
|
|
|
|
|
|
|
super(BaseModule, self).__init__()
|
|
|
|
|
|
self._is_init = False
|
|
|
|
self.init_cfg = copy.deepcopy(init_cfg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@property
|
|
def is_init(self):
|
|
return self._is_init
|
|
|
|
def init_weights(self):
|
|
"""Initialize the weights."""
|
|
|
|
is_top_level_module = False
|
|
|
|
if not hasattr(self, '_params_init_info'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._params_init_info = defaultdict(dict)
|
|
is_top_level_module = True
|
|
|
|
|
|
|
|
|
|
|
|
for name, param in self.named_parameters():
|
|
self._params_init_info[param][
|
|
'init_info'] = f'The value is the same before and ' \
|
|
f'after calling `init_weights` ' \
|
|
f'of {self.__class__.__name__} '
|
|
self._params_init_info[param][
|
|
'tmp_mean_value'] = param.data.mean()
|
|
|
|
|
|
|
|
|
|
|
|
for sub_module in self.modules():
|
|
sub_module._params_init_info = self._params_init_info
|
|
|
|
|
|
|
|
logger_names = list(logger_initialized.keys())
|
|
logger_name = logger_names[0] if logger_names else 'mmcv'
|
|
|
|
from ..cnn import initialize
|
|
from ..cnn.utils.weight_init import update_init_info
|
|
module_name = self.__class__.__name__
|
|
if not self._is_init:
|
|
if self.init_cfg:
|
|
print_log(
|
|
f'initialize {module_name} with init_cfg {self.init_cfg}',
|
|
logger=logger_name)
|
|
initialize(self, self.init_cfg)
|
|
if isinstance(self.init_cfg, dict):
|
|
|
|
|
|
|
|
|
|
if self.init_cfg['type'] == 'Pretrained':
|
|
return
|
|
|
|
for m in self.children():
|
|
if hasattr(m, 'init_weights'):
|
|
m.init_weights()
|
|
|
|
update_init_info(
|
|
m,
|
|
init_info=f'Initialized by '
|
|
f'user-defined `init_weights`'
|
|
f' in {m.__class__.__name__} ')
|
|
|
|
self._is_init = True
|
|
else:
|
|
warnings.warn(f'init_weights of {self.__class__.__name__} has '
|
|
f'been called more than once.')
|
|
|
|
if is_top_level_module:
|
|
self._dump_init_info(logger_name)
|
|
|
|
for sub_module in self.modules():
|
|
del sub_module._params_init_info
|
|
|
|
@master_only
|
|
def _dump_init_info(self, logger_name):
|
|
"""Dump the initialization information to a file named
|
|
`initialization.log.json` in workdir.
|
|
|
|
Args:
|
|
logger_name (str): The name of logger.
|
|
"""
|
|
|
|
logger = get_logger(logger_name)
|
|
|
|
with_file_handler = False
|
|
|
|
for handler in logger.handlers:
|
|
if isinstance(handler, FileHandler):
|
|
handler.stream.write(
|
|
'Name of parameter - Initialization information\n')
|
|
for name, param in self.named_parameters():
|
|
handler.stream.write(
|
|
f'\n{name} - {param.shape}: '
|
|
f"\n{self._params_init_info[param]['init_info']} \n")
|
|
handler.stream.flush()
|
|
with_file_handler = True
|
|
if not with_file_handler:
|
|
for name, param in self.named_parameters():
|
|
print_log(
|
|
f'\n{name} - {param.shape}: '
|
|
f"\n{self._params_init_info[param]['init_info']} \n ",
|
|
logger=logger_name)
|
|
|
|
def __repr__(self):
|
|
s = super().__repr__()
|
|
if self.init_cfg:
|
|
s += f'\ninit_cfg={self.init_cfg}'
|
|
return s
|
|
|
|
|
|
class Sequential(BaseModule, nn.Sequential):
|
|
"""Sequential module in openmmlab.
|
|
|
|
Args:
|
|
init_cfg (dict, optional): Initialization config dict.
|
|
"""
|
|
|
|
def __init__(self, *args, init_cfg=None):
|
|
BaseModule.__init__(self, init_cfg)
|
|
nn.Sequential.__init__(self, *args)
|
|
|
|
|
|
class ModuleList(BaseModule, nn.ModuleList):
|
|
"""ModuleList in openmmlab.
|
|
|
|
Args:
|
|
modules (iterable, optional): an iterable of modules to add.
|
|
init_cfg (dict, optional): Initialization config dict.
|
|
"""
|
|
|
|
def __init__(self, modules=None, init_cfg=None):
|
|
BaseModule.__init__(self, init_cfg)
|
|
nn.ModuleList.__init__(self, modules)
|
|
|