|
|
|
import functools
|
|
import os
|
|
import subprocess
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from torch import distributed as dist
|
|
from torch._utils import (_flatten_dense_tensors, _take_tensors,
|
|
_unflatten_dense_tensors)
|
|
|
|
|
|
def init_dist(launcher, backend='nccl', **kwargs):
|
|
if mp.get_start_method(allow_none=True) is None:
|
|
mp.set_start_method('spawn')
|
|
if launcher == 'pytorch':
|
|
_init_dist_pytorch(backend, **kwargs)
|
|
elif launcher == 'mpi':
|
|
_init_dist_mpi(backend, **kwargs)
|
|
elif launcher == 'slurm':
|
|
_init_dist_slurm(backend, **kwargs)
|
|
else:
|
|
raise ValueError(f'Invalid launcher type: {launcher}')
|
|
|
|
|
|
def _init_dist_pytorch(backend, **kwargs):
|
|
|
|
rank = int(os.environ['RANK'])
|
|
num_gpus = torch.cuda.device_count()
|
|
torch.cuda.set_device(rank % num_gpus)
|
|
dist.init_process_group(backend=backend, **kwargs)
|
|
|
|
|
|
def _init_dist_mpi(backend, **kwargs):
|
|
|
|
rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
|
num_gpus = torch.cuda.device_count()
|
|
torch.cuda.set_device(rank % num_gpus)
|
|
dist.init_process_group(backend=backend, **kwargs)
|
|
|
|
|
|
def _init_dist_slurm(backend, port=None):
|
|
"""Initialize slurm distributed training environment.
|
|
|
|
If argument ``port`` is not specified, then the master port will be system
|
|
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
|
|
environment variable, then a default port ``29500`` will be used.
|
|
|
|
Args:
|
|
backend (str): Backend of torch.distributed.
|
|
port (int, optional): Master port. Defaults to None.
|
|
"""
|
|
proc_id = int(os.environ['SLURM_PROCID'])
|
|
ntasks = int(os.environ['SLURM_NTASKS'])
|
|
node_list = os.environ['SLURM_NODELIST']
|
|
num_gpus = torch.cuda.device_count()
|
|
torch.cuda.set_device(proc_id % num_gpus)
|
|
addr = subprocess.getoutput(
|
|
f'scontrol show hostname {node_list} | head -n1')
|
|
|
|
if port is not None:
|
|
os.environ['MASTER_PORT'] = str(port)
|
|
elif 'MASTER_PORT' in os.environ:
|
|
pass
|
|
else:
|
|
|
|
os.environ['MASTER_PORT'] = '29500'
|
|
|
|
if 'MASTER_ADDR' not in os.environ:
|
|
os.environ['MASTER_ADDR'] = addr
|
|
os.environ['WORLD_SIZE'] = str(ntasks)
|
|
os.environ['LOCAL_RANK'] = str(proc_id % num_gpus)
|
|
os.environ['RANK'] = str(proc_id)
|
|
dist.init_process_group(backend=backend)
|
|
|
|
|
|
def get_dist_info():
|
|
if dist.is_available() and dist.is_initialized():
|
|
rank = dist.get_rank()
|
|
world_size = dist.get_world_size()
|
|
else:
|
|
rank = 0
|
|
world_size = 1
|
|
return rank, world_size
|
|
|
|
|
|
def master_only(func):
|
|
|
|
@functools.wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
rank, _ = get_dist_info()
|
|
if rank == 0:
|
|
return func(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
def allreduce_params(params, coalesce=True, bucket_size_mb=-1):
|
|
"""Allreduce parameters.
|
|
|
|
Args:
|
|
params (list[torch.Parameters]): List of parameters or buffers of a
|
|
model.
|
|
coalesce (bool, optional): Whether allreduce parameters as a whole.
|
|
Defaults to True.
|
|
bucket_size_mb (int, optional): Size of bucket, the unit is MB.
|
|
Defaults to -1.
|
|
"""
|
|
_, world_size = get_dist_info()
|
|
if world_size == 1:
|
|
return
|
|
params = [param.data for param in params]
|
|
if coalesce:
|
|
_allreduce_coalesced(params, world_size, bucket_size_mb)
|
|
else:
|
|
for tensor in params:
|
|
dist.all_reduce(tensor.div_(world_size))
|
|
|
|
|
|
def allreduce_grads(params, coalesce=True, bucket_size_mb=-1):
|
|
"""Allreduce gradients.
|
|
|
|
Args:
|
|
params (list[torch.Parameters]): List of parameters of a model
|
|
coalesce (bool, optional): Whether allreduce parameters as a whole.
|
|
Defaults to True.
|
|
bucket_size_mb (int, optional): Size of bucket, the unit is MB.
|
|
Defaults to -1.
|
|
"""
|
|
grads = [
|
|
param.grad.data for param in params
|
|
if param.requires_grad and param.grad is not None
|
|
]
|
|
_, world_size = get_dist_info()
|
|
if world_size == 1:
|
|
return
|
|
if coalesce:
|
|
_allreduce_coalesced(grads, world_size, bucket_size_mb)
|
|
else:
|
|
for tensor in grads:
|
|
dist.all_reduce(tensor.div_(world_size))
|
|
|
|
|
|
def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1):
|
|
if bucket_size_mb > 0:
|
|
bucket_size_bytes = bucket_size_mb * 1024 * 1024
|
|
buckets = _take_tensors(tensors, bucket_size_bytes)
|
|
else:
|
|
buckets = OrderedDict()
|
|
for tensor in tensors:
|
|
tp = tensor.type()
|
|
if tp not in buckets:
|
|
buckets[tp] = []
|
|
buckets[tp].append(tensor)
|
|
buckets = buckets.values()
|
|
|
|
for bucket in buckets:
|
|
flat_tensors = _flatten_dense_tensors(bucket)
|
|
dist.all_reduce(flat_tensors)
|
|
flat_tensors.div_(world_size)
|
|
for tensor, synced in zip(
|
|
bucket, _unflatten_dense_tensors(flat_tensors, bucket)):
|
|
tensor.copy_(synced)
|
|
|