|
import os.path as osp
|
|
import pickle
|
|
import shutil
|
|
import tempfile
|
|
|
|
import annotator.uniformer.mmcv as mmcv
|
|
import numpy as np
|
|
import torch
|
|
import torch.distributed as dist
|
|
from annotator.uniformer.mmcv.image import tensor2imgs
|
|
from annotator.uniformer.mmcv.runner import get_dist_info
|
|
|
|
|
|
def np2tmp(array, temp_file_name=None):
|
|
"""Save ndarray to local numpy file.
|
|
|
|
Args:
|
|
array (ndarray): Ndarray to save.
|
|
temp_file_name (str): Numpy file name. If 'temp_file_name=None', this
|
|
function will generate a file name with tempfile.NamedTemporaryFile
|
|
to save ndarray. Default: None.
|
|
|
|
Returns:
|
|
str: The numpy file name.
|
|
"""
|
|
|
|
if temp_file_name is None:
|
|
temp_file_name = tempfile.NamedTemporaryFile(
|
|
suffix='.npy', delete=False).name
|
|
np.save(temp_file_name, array)
|
|
return temp_file_name
|
|
|
|
|
|
def single_gpu_test(model,
|
|
data_loader,
|
|
show=False,
|
|
out_dir=None,
|
|
efficient_test=False,
|
|
opacity=0.5):
|
|
"""Test with single GPU.
|
|
|
|
Args:
|
|
model (nn.Module): Model to be tested.
|
|
data_loader (utils.data.Dataloader): Pytorch data loader.
|
|
show (bool): Whether show results during inference. Default: False.
|
|
out_dir (str, optional): If specified, the results will be dumped into
|
|
the directory to save output results.
|
|
efficient_test (bool): Whether save the results as local numpy files to
|
|
save CPU memory during evaluation. Default: False.
|
|
opacity(float): Opacity of painted segmentation map.
|
|
Default 0.5.
|
|
Must be in (0, 1] range.
|
|
Returns:
|
|
list: The prediction results.
|
|
"""
|
|
|
|
model.eval()
|
|
results = []
|
|
dataset = data_loader.dataset
|
|
prog_bar = mmcv.ProgressBar(len(dataset))
|
|
for i, data in enumerate(data_loader):
|
|
with torch.no_grad():
|
|
result = model(return_loss=False, **data)
|
|
|
|
if show or out_dir:
|
|
img_tensor = data['img'][0]
|
|
img_metas = data['img_metas'][0].data[0]
|
|
imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg'])
|
|
assert len(imgs) == len(img_metas)
|
|
|
|
for img, img_meta in zip(imgs, img_metas):
|
|
h, w, _ = img_meta['img_shape']
|
|
img_show = img[:h, :w, :]
|
|
|
|
ori_h, ori_w = img_meta['ori_shape'][:-1]
|
|
img_show = mmcv.imresize(img_show, (ori_w, ori_h))
|
|
|
|
if out_dir:
|
|
out_file = osp.join(out_dir, img_meta['ori_filename'])
|
|
else:
|
|
out_file = None
|
|
|
|
model.module.show_result(
|
|
img_show,
|
|
result,
|
|
palette=dataset.PALETTE,
|
|
show=show,
|
|
out_file=out_file,
|
|
opacity=opacity)
|
|
|
|
if isinstance(result, list):
|
|
if efficient_test:
|
|
result = [np2tmp(_) for _ in result]
|
|
results.extend(result)
|
|
else:
|
|
if efficient_test:
|
|
result = np2tmp(result)
|
|
results.append(result)
|
|
|
|
batch_size = len(result)
|
|
for _ in range(batch_size):
|
|
prog_bar.update()
|
|
return results
|
|
|
|
|
|
def multi_gpu_test(model,
|
|
data_loader,
|
|
tmpdir=None,
|
|
gpu_collect=False,
|
|
efficient_test=False):
|
|
"""Test model with multiple gpus.
|
|
|
|
This method tests model with multiple gpus and collects the results
|
|
under two different modes: gpu and cpu modes. By setting 'gpu_collect=True'
|
|
it encodes results to gpu tensors and use gpu communication for results
|
|
collection. On cpu mode it saves the results on different gpus to 'tmpdir'
|
|
and collects them by the rank 0 worker.
|
|
|
|
Args:
|
|
model (nn.Module): Model to be tested.
|
|
data_loader (utils.data.Dataloader): Pytorch data loader.
|
|
tmpdir (str): Path of directory to save the temporary results from
|
|
different gpus under cpu mode.
|
|
gpu_collect (bool): Option to use either gpu or cpu to collect results.
|
|
efficient_test (bool): Whether save the results as local numpy files to
|
|
save CPU memory during evaluation. Default: False.
|
|
|
|
Returns:
|
|
list: The prediction results.
|
|
"""
|
|
|
|
model.eval()
|
|
results = []
|
|
dataset = data_loader.dataset
|
|
rank, world_size = get_dist_info()
|
|
if rank == 0:
|
|
prog_bar = mmcv.ProgressBar(len(dataset))
|
|
for i, data in enumerate(data_loader):
|
|
with torch.no_grad():
|
|
result = model(return_loss=False, rescale=True, **data)
|
|
|
|
if isinstance(result, list):
|
|
if efficient_test:
|
|
result = [np2tmp(_) for _ in result]
|
|
results.extend(result)
|
|
else:
|
|
if efficient_test:
|
|
result = np2tmp(result)
|
|
results.append(result)
|
|
|
|
if rank == 0:
|
|
batch_size = data['img'][0].size(0)
|
|
for _ in range(batch_size * world_size):
|
|
prog_bar.update()
|
|
|
|
|
|
if gpu_collect:
|
|
results = collect_results_gpu(results, len(dataset))
|
|
else:
|
|
results = collect_results_cpu(results, len(dataset), tmpdir)
|
|
return results
|
|
|
|
|
|
def collect_results_cpu(result_part, size, tmpdir=None):
|
|
"""Collect results with CPU."""
|
|
rank, world_size = get_dist_info()
|
|
|
|
if tmpdir is None:
|
|
MAX_LEN = 512
|
|
|
|
dir_tensor = torch.full((MAX_LEN, ),
|
|
32,
|
|
dtype=torch.uint8,
|
|
device='cuda')
|
|
if rank == 0:
|
|
tmpdir = tempfile.mkdtemp()
|
|
tmpdir = torch.tensor(
|
|
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
|
|
dir_tensor[:len(tmpdir)] = tmpdir
|
|
dist.broadcast(dir_tensor, 0)
|
|
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
|
|
else:
|
|
mmcv.mkdir_or_exist(tmpdir)
|
|
|
|
mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
|
|
dist.barrier()
|
|
|
|
if rank != 0:
|
|
return None
|
|
else:
|
|
|
|
part_list = []
|
|
for i in range(world_size):
|
|
part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
|
|
part_list.append(mmcv.load(part_file))
|
|
|
|
ordered_results = []
|
|
for res in zip(*part_list):
|
|
ordered_results.extend(list(res))
|
|
|
|
ordered_results = ordered_results[:size]
|
|
|
|
shutil.rmtree(tmpdir)
|
|
return ordered_results
|
|
|
|
|
|
def collect_results_gpu(result_part, size):
|
|
"""Collect results with GPU."""
|
|
rank, world_size = get_dist_info()
|
|
|
|
part_tensor = torch.tensor(
|
|
bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda')
|
|
|
|
shape_tensor = torch.tensor(part_tensor.shape, device='cuda')
|
|
shape_list = [shape_tensor.clone() for _ in range(world_size)]
|
|
dist.all_gather(shape_list, shape_tensor)
|
|
|
|
shape_max = torch.tensor(shape_list).max()
|
|
part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda')
|
|
part_send[:shape_tensor[0]] = part_tensor
|
|
part_recv_list = [
|
|
part_tensor.new_zeros(shape_max) for _ in range(world_size)
|
|
]
|
|
|
|
dist.all_gather(part_recv_list, part_send)
|
|
|
|
if rank == 0:
|
|
part_list = []
|
|
for recv, shape in zip(part_recv_list, shape_list):
|
|
part_list.append(
|
|
pickle.loads(recv[:shape[0]].cpu().numpy().tobytes()))
|
|
|
|
ordered_results = []
|
|
for res in zip(*part_list):
|
|
ordered_results.extend(list(res))
|
|
|
|
ordered_results = ordered_results[:size]
|
|
return ordered_results
|
|
|