|
import math
|
|
|
|
from annotator.uniformer.mmcv.cnn import build_conv_layer, build_norm_layer
|
|
|
|
from ..builder import BACKBONES
|
|
from ..utils import ResLayer
|
|
from .resnet import Bottleneck as _Bottleneck
|
|
from .resnet import ResNet
|
|
|
|
|
|
class Bottleneck(_Bottleneck):
|
|
"""Bottleneck block for ResNeXt.
|
|
|
|
If style is "pytorch", the stride-two layer is the 3x3 conv layer, if it is
|
|
"caffe", the stride-two layer is the first 1x1 conv layer.
|
|
"""
|
|
|
|
def __init__(self,
|
|
inplanes,
|
|
planes,
|
|
groups=1,
|
|
base_width=4,
|
|
base_channels=64,
|
|
**kwargs):
|
|
super(Bottleneck, self).__init__(inplanes, planes, **kwargs)
|
|
|
|
if groups == 1:
|
|
width = self.planes
|
|
else:
|
|
width = math.floor(self.planes *
|
|
(base_width / base_channels)) * groups
|
|
|
|
self.norm1_name, norm1 = build_norm_layer(
|
|
self.norm_cfg, width, postfix=1)
|
|
self.norm2_name, norm2 = build_norm_layer(
|
|
self.norm_cfg, width, postfix=2)
|
|
self.norm3_name, norm3 = build_norm_layer(
|
|
self.norm_cfg, self.planes * self.expansion, postfix=3)
|
|
|
|
self.conv1 = build_conv_layer(
|
|
self.conv_cfg,
|
|
self.inplanes,
|
|
width,
|
|
kernel_size=1,
|
|
stride=self.conv1_stride,
|
|
bias=False)
|
|
self.add_module(self.norm1_name, norm1)
|
|
fallback_on_stride = False
|
|
self.with_modulated_dcn = False
|
|
if self.with_dcn:
|
|
fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
|
|
if not self.with_dcn or fallback_on_stride:
|
|
self.conv2 = build_conv_layer(
|
|
self.conv_cfg,
|
|
width,
|
|
width,
|
|
kernel_size=3,
|
|
stride=self.conv2_stride,
|
|
padding=self.dilation,
|
|
dilation=self.dilation,
|
|
groups=groups,
|
|
bias=False)
|
|
else:
|
|
assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
|
|
self.conv2 = build_conv_layer(
|
|
self.dcn,
|
|
width,
|
|
width,
|
|
kernel_size=3,
|
|
stride=self.conv2_stride,
|
|
padding=self.dilation,
|
|
dilation=self.dilation,
|
|
groups=groups,
|
|
bias=False)
|
|
|
|
self.add_module(self.norm2_name, norm2)
|
|
self.conv3 = build_conv_layer(
|
|
self.conv_cfg,
|
|
width,
|
|
self.planes * self.expansion,
|
|
kernel_size=1,
|
|
bias=False)
|
|
self.add_module(self.norm3_name, norm3)
|
|
|
|
|
|
@BACKBONES.register_module()
|
|
class ResNeXt(ResNet):
|
|
"""ResNeXt backbone.
|
|
|
|
Args:
|
|
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
|
|
in_channels (int): Number of input image channels. Normally 3.
|
|
num_stages (int): Resnet stages, normally 4.
|
|
groups (int): Group of resnext.
|
|
base_width (int): Base width of resnext.
|
|
strides (Sequence[int]): Strides of the first block of each stage.
|
|
dilations (Sequence[int]): Dilation of each stage.
|
|
out_indices (Sequence[int]): Output from which stages.
|
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
|
|
layer is the 3x3 conv layer, otherwise the stride-two layer is
|
|
the first 1x1 conv layer.
|
|
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
|
|
not freezing any parameters.
|
|
norm_cfg (dict): dictionary to construct and config norm layer.
|
|
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
|
freeze running stats (mean and var). Note: Effect on Batch Norm
|
|
and its variants only.
|
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
|
memory while slowing down the training speed.
|
|
zero_init_residual (bool): whether to use zero init for last norm layer
|
|
in resblocks to let them behave as identity.
|
|
|
|
Example:
|
|
>>> from annotator.uniformer.mmseg.models import ResNeXt
|
|
>>> import torch
|
|
>>> self = ResNeXt(depth=50)
|
|
>>> self.eval()
|
|
>>> inputs = torch.rand(1, 3, 32, 32)
|
|
>>> level_outputs = self.forward(inputs)
|
|
>>> for level_out in level_outputs:
|
|
... print(tuple(level_out.shape))
|
|
(1, 256, 8, 8)
|
|
(1, 512, 4, 4)
|
|
(1, 1024, 2, 2)
|
|
(1, 2048, 1, 1)
|
|
"""
|
|
|
|
arch_settings = {
|
|
50: (Bottleneck, (3, 4, 6, 3)),
|
|
101: (Bottleneck, (3, 4, 23, 3)),
|
|
152: (Bottleneck, (3, 8, 36, 3))
|
|
}
|
|
|
|
def __init__(self, groups=1, base_width=4, **kwargs):
|
|
self.groups = groups
|
|
self.base_width = base_width
|
|
super(ResNeXt, self).__init__(**kwargs)
|
|
|
|
def make_res_layer(self, **kwargs):
|
|
"""Pack all blocks in a stage into a ``ResLayer``"""
|
|
return ResLayer(
|
|
groups=self.groups,
|
|
base_width=self.base_width,
|
|
base_channels=self.base_channels,
|
|
**kwargs)
|
|
|