|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
|
|
class Encoding(nn.Module):
|
|
"""Encoding Layer: a learnable residual encoder.
|
|
|
|
Input is of shape (batch_size, channels, height, width).
|
|
Output is of shape (batch_size, num_codes, channels).
|
|
|
|
Args:
|
|
channels: dimension of the features or feature channels
|
|
num_codes: number of code words
|
|
"""
|
|
|
|
def __init__(self, channels, num_codes):
|
|
super(Encoding, self).__init__()
|
|
|
|
self.channels, self.num_codes = channels, num_codes
|
|
std = 1. / ((num_codes * channels)**0.5)
|
|
|
|
self.codewords = nn.Parameter(
|
|
torch.empty(num_codes, channels,
|
|
dtype=torch.float).uniform_(-std, std),
|
|
requires_grad=True)
|
|
|
|
self.scale = nn.Parameter(
|
|
torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0),
|
|
requires_grad=True)
|
|
|
|
@staticmethod
|
|
def scaled_l2(x, codewords, scale):
|
|
num_codes, channels = codewords.size()
|
|
batch_size = x.size(0)
|
|
reshaped_scale = scale.view((1, 1, num_codes))
|
|
expanded_x = x.unsqueeze(2).expand(
|
|
(batch_size, x.size(1), num_codes, channels))
|
|
reshaped_codewords = codewords.view((1, 1, num_codes, channels))
|
|
|
|
scaled_l2_norm = reshaped_scale * (
|
|
expanded_x - reshaped_codewords).pow(2).sum(dim=3)
|
|
return scaled_l2_norm
|
|
|
|
@staticmethod
|
|
def aggregate(assignment_weights, x, codewords):
|
|
num_codes, channels = codewords.size()
|
|
reshaped_codewords = codewords.view((1, 1, num_codes, channels))
|
|
batch_size = x.size(0)
|
|
|
|
expanded_x = x.unsqueeze(2).expand(
|
|
(batch_size, x.size(1), num_codes, channels))
|
|
encoded_feat = (assignment_weights.unsqueeze(3) *
|
|
(expanded_x - reshaped_codewords)).sum(dim=1)
|
|
return encoded_feat
|
|
|
|
def forward(self, x):
|
|
assert x.dim() == 4 and x.size(1) == self.channels
|
|
|
|
batch_size = x.size(0)
|
|
|
|
x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous()
|
|
|
|
assignment_weights = F.softmax(
|
|
self.scaled_l2(x, self.codewords, self.scale), dim=2)
|
|
|
|
encoded_feat = self.aggregate(assignment_weights, x, self.codewords)
|
|
return encoded_feat
|
|
|
|
def __repr__(self):
|
|
repr_str = self.__class__.__name__
|
|
repr_str += f'(Nx{self.channels}xHxW =>Nx{self.num_codes}' \
|
|
f'x{self.channels})'
|
|
return repr_str
|
|
|