|
import warnings
|
|
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def resize(input,
|
|
size=None,
|
|
scale_factor=None,
|
|
mode='nearest',
|
|
align_corners=None,
|
|
warning=True):
|
|
if warning:
|
|
if size is not None and align_corners:
|
|
input_h, input_w = tuple(int(x) for x in input.shape[2:])
|
|
output_h, output_w = tuple(int(x) for x in size)
|
|
if output_h > input_h or output_w > output_h:
|
|
if ((output_h > 1 and output_w > 1 and input_h > 1
|
|
and input_w > 1) and (output_h - 1) % (input_h - 1)
|
|
and (output_w - 1) % (input_w - 1)):
|
|
warnings.warn(
|
|
f'When align_corners={align_corners}, '
|
|
'the output would more aligned if '
|
|
f'input size {(input_h, input_w)} is `x+1` and '
|
|
f'out size {(output_h, output_w)} is `nx+1`')
|
|
return F.interpolate(input, size, scale_factor, mode, align_corners)
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
|
|
def __init__(self,
|
|
size=None,
|
|
scale_factor=None,
|
|
mode='nearest',
|
|
align_corners=None):
|
|
super(Upsample, self).__init__()
|
|
self.size = size
|
|
if isinstance(scale_factor, tuple):
|
|
self.scale_factor = tuple(float(factor) for factor in scale_factor)
|
|
else:
|
|
self.scale_factor = float(scale_factor) if scale_factor else None
|
|
self.mode = mode
|
|
self.align_corners = align_corners
|
|
|
|
def forward(self, x):
|
|
if not self.size:
|
|
size = [int(t * self.scale_factor) for t in x.shape[-2:]]
|
|
else:
|
|
size = self.size
|
|
return resize(x, size, None, self.mode, self.align_corners)
|
|
|