Delete README.md
Browse files
README.md
DELETED
@@ -1,70 +0,0 @@
|
|
1 |
-
## Introduction
|
2 |
-
<p align="center">
|
3 |
-
<br>
|
4 |
-
<img src="assets/FAPM.png"/>
|
5 |
-
<br>
|
6 |
-
<p>
|
7 |
-
|
8 |
-
## Installation
|
9 |
-
|
10 |
-
1. (Optional) Creating conda environment
|
11 |
-
|
12 |
-
```bash
|
13 |
-
conda create -n lavis python=3.8
|
14 |
-
conda activate lavis
|
15 |
-
```
|
16 |
-
|
17 |
-
2. for development, you may build from source
|
18 |
-
|
19 |
-
```bash
|
20 |
-
git clone https://github.com/xiangwenkai/FAPM.git
|
21 |
-
cd FAPM
|
22 |
-
pip install -e .
|
23 |
-
|
24 |
-
pip install Biopython
|
25 |
-
pip install fair-esm
|
26 |
-
```
|
27 |
-
|
28 |
-
### Datasets
|
29 |
-
#### 1.raw dataset
|
30 |
-
Raw data are avaliable at *https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2023_04/knowledgebase/*, this file is very large and need to be processed to get its name, sequence, GO label, function description and prompt.
|
31 |
-
The domain level protein dataset we used are avaliable at *https://ftp.ebi.ac.uk/pub/databases/interpro/releases/95.0/protein2ipr.dat.gz*
|
32 |
-
In this respository, We provide the experimental train/val/test sets of Swiss-Prot, which are avaliable at data/swissprot_exp
|
33 |
-
#### 2.ESM2 embeddings
|
34 |
-
ESM2 embeddings generation code: *https://github.com/facebookresearch/esm*
|
35 |
-
The generation command:
|
36 |
-
```bash
|
37 |
-
git clone https://github.com/facebookresearch/esm.git
|
38 |
-
python scripts/extract.py esm2_t33_3B_UR50D you_path/protein.fasta you_path_to_save_embedding_files --repr_layers 36 --truncation_seq_length 1024 --include per_tok
|
39 |
-
```
|
40 |
-
The default path to save embedding files in this respository is **data/emb_esm2_3b**
|
41 |
-
|
42 |
-
## Pretraining language models
|
43 |
-
Source: *https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B*
|
44 |
-
|
45 |
-
## Training
|
46 |
-
data config: lavis/configs/datasets/protein/GO_defaults_cap.yaml
|
47 |
-
stage1 config: lavis/projects/blip2/train/protein_pretrain_stage1.yaml
|
48 |
-
stage1 training command: run_scripts/blip2/train/protein_pretrain_domain_stage1.sh
|
49 |
-
stage2 config: lavis/projects/blip2/train/protein_pretrain_stage2.yaml
|
50 |
-
stage2 training/finetuning command: run_scripts/blip2/train/protein_pretrain_domain_stage2.sh
|
51 |
-
|
52 |
-
## Trained models
|
53 |
-
You can download our trained models from drive: *https://drive.google.com/drive/folders/1aA0eSYxNw3DvrU5GU1Cu-4q2kIxxAGSE?usp=drive_link*
|
54 |
-
|
55 |
-
## Testing
|
56 |
-
config: lavis/projects/blip2/eval/caption_protein_eval.yaml
|
57 |
-
command: run_scripts/blip2/eval/eval_cap_protein.sh
|
58 |
-
|
59 |
-
## Inference example
|
60 |
-
We provide an example in **FAPM_inference.py**. You can change the example protein to you custom case
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|