wenkai commited on
Commit
f18092c
·
verified ·
1 Parent(s): 994daed

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -70
README.md DELETED
@@ -1,70 +0,0 @@
1
- ## Introduction
2
- <p align="center">
3
- <br>
4
- <img src="assets/FAPM.png"/>
5
- <br>
6
- <p>
7
-
8
- ## Installation
9
-
10
- 1. (Optional) Creating conda environment
11
-
12
- ```bash
13
- conda create -n lavis python=3.8
14
- conda activate lavis
15
- ```
16
-
17
- 2. for development, you may build from source
18
-
19
- ```bash
20
- git clone https://github.com/xiangwenkai/FAPM.git
21
- cd FAPM
22
- pip install -e .
23
-
24
- pip install Biopython
25
- pip install fair-esm
26
- ```
27
-
28
- ### Datasets
29
- #### 1.raw dataset
30
- Raw data are avaliable at *https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2023_04/knowledgebase/*, this file is very large and need to be processed to get its name, sequence, GO label, function description and prompt.
31
- The domain level protein dataset we used are avaliable at *https://ftp.ebi.ac.uk/pub/databases/interpro/releases/95.0/protein2ipr.dat.gz*
32
- In this respository, We provide the experimental train/val/test sets of Swiss-Prot, which are avaliable at data/swissprot_exp
33
- #### 2.ESM2 embeddings
34
- ESM2 embeddings generation code: *https://github.com/facebookresearch/esm*
35
- The generation command:
36
- ```bash
37
- git clone https://github.com/facebookresearch/esm.git
38
- python scripts/extract.py esm2_t33_3B_UR50D you_path/protein.fasta you_path_to_save_embedding_files --repr_layers 36 --truncation_seq_length 1024 --include per_tok
39
- ```
40
- The default path to save embedding files in this respository is **data/emb_esm2_3b**
41
-
42
- ## Pretraining language models
43
- Source: *https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B*
44
-
45
- ## Training
46
- data config: lavis/configs/datasets/protein/GO_defaults_cap.yaml
47
- stage1 config: lavis/projects/blip2/train/protein_pretrain_stage1.yaml
48
- stage1 training command: run_scripts/blip2/train/protein_pretrain_domain_stage1.sh
49
- stage2 config: lavis/projects/blip2/train/protein_pretrain_stage2.yaml
50
- stage2 training/finetuning command: run_scripts/blip2/train/protein_pretrain_domain_stage2.sh
51
-
52
- ## Trained models
53
- You can download our trained models from drive: *https://drive.google.com/drive/folders/1aA0eSYxNw3DvrU5GU1Cu-4q2kIxxAGSE?usp=drive_link*
54
-
55
- ## Testing
56
- config: lavis/projects/blip2/eval/caption_protein_eval.yaml
57
- command: run_scripts/blip2/eval/eval_cap_protein.sh
58
-
59
- ## Inference example
60
- We provide an example in **FAPM_inference.py**. You can change the example protein to you custom case
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-