File size: 7,945 Bytes
803ef9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from thop import profile, clever_format
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10, CIFAR100
from tqdm import tqdm
import utils
import wandb
import torchvision
class Net(nn.Module):
def __init__(self, num_class, pretrained_path, dataset, arch):
super(Net, self).__init__()
if arch=='resnet18':
embedding_size = 512
elif arch=='resnet50':
embedding_size = 2048
else:
raise NotImplementedError
# encoder
from model import Model
self.f = Model(dataset=dataset, arch=arch).f
# classifier
self.fc = nn.Linear(embedding_size, num_class, bias=True)
self.load_state_dict(torch.load(pretrained_path, map_location='cpu'), strict=False)
def forward(self, x):
x = self.f(x)
feature = torch.flatten(x, start_dim=1)
out = self.fc(feature)
return out
# train or test for one epoch
def train_val(net, data_loader, train_optimizer):
is_train = train_optimizer is not None
net.train() if is_train else net.eval()
total_loss, total_correct_1, total_correct_5, total_num, data_bar = 0.0, 0.0, 0.0, 0, tqdm(data_loader)
with (torch.enable_grad() if is_train else torch.no_grad()):
for data, target in data_bar:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
out = net(data)
loss = loss_criterion(out, target)
if is_train:
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += data.size(0)
total_loss += loss.item() * data.size(0)
prediction = torch.argsort(out, dim=-1, descending=True)
total_correct_1 += torch.sum((prediction[:, 0:1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
total_correct_5 += torch.sum((prediction[:, 0:5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
data_bar.set_description('{} Epoch: [{}/{}] Loss: {:.4f} ACC@1: {:.2f}% ACC@5: {:.2f}% model: {}'
.format('Train' if is_train else 'Test', epoch, epochs, total_loss / total_num,
total_correct_1 / total_num * 100, total_correct_5 / total_num * 100,
model_path.split('/')[-1]))
return total_loss / total_num, total_correct_1 / total_num * 100, total_correct_5 / total_num * 100
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Linear Evaluation')
parser.add_argument('--dataset', default='cifar10', type=str, help='Dataset: cifar10 or tiny_imagenet or stl10')
parser.add_argument('--arch', default='resnet50', type=str, help='Backbone architecture for experiments', choices=['resnet50', 'resnet18'])
parser.add_argument('--model_path', type=str, default='results/Barlow_Twins/0.005_64_128_model.pth',
help='The base string of the pretrained model path')
parser.add_argument('--batch_size', type=int, default=512, help='Number of images in each mini-batch')
parser.add_argument('--epochs', type=int, default=200, help='Number of sweeps over the dataset to train')
args = parser.parse_args()
wandb.init(project=f"Barlow-Twins-MixUp-Linear-{args.dataset}-{args.arch}", config=args, dir='/data/wbandar1/projects/ssl-aug-artifacts/wandb_logs/')
run_id = wandb.run.id
model_path, batch_size, epochs = args.model_path, args.batch_size, args.epochs
dataset = args.dataset
if dataset == 'cifar10':
train_data = CIFAR10(root='data', train=True,\
transform=utils.CifarPairTransform(train_transform = True, pair_transform=False), download=True)
test_data = CIFAR10(root='data', train=False,\
transform=utils.CifarPairTransform(train_transform = False, pair_transform=False), download=True)
if dataset == 'cifar100':
train_data = CIFAR100(root='data', train=True,\
transform=utils.CifarPairTransform(train_transform = True, pair_transform=False), download=True)
test_data = CIFAR100(root='data', train=False,\
transform=utils.CifarPairTransform(train_transform = False, pair_transform=False), download=True)
elif dataset == 'stl10':
train_data = torchvision.datasets.STL10(root='data', split="train", \
transform=utils.StlPairTransform(train_transform = True, pair_transform=False), download=True)
test_data = torchvision.datasets.STL10(root='data', split="test", \
transform=utils.StlPairTransform(train_transform = False, pair_transform=False), download=True)
elif dataset == 'tiny_imagenet':
train_data = torchvision.datasets.ImageFolder('/data/wbandar1/datasets/tiny-imagenet-200/train', \
utils.TinyImageNetPairTransform(train_transform=True, pair_transform=False))
test_data = torchvision.datasets.ImageFolder('/data/wbandar1/datasets/tiny-imagenet-200/val', \
utils.TinyImageNetPairTransform(train_transform = False, pair_transform=False))
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True)
model = Net(num_class=len(train_data.classes), pretrained_path=model_path, dataset=dataset, arch=args.arch).cuda()
for param in model.f.parameters():
param.requires_grad = False
if dataset == 'cifar10' or dataset == 'cifar100':
flops, params = profile(model, inputs=(torch.randn(1, 3, 32, 32).cuda(),))
elif dataset == 'tiny_imagenet' or dataset == 'stl10':
flops, params = profile(model, inputs=(torch.randn(1, 3, 64, 64).cuda(),))
flops, params = clever_format([flops, params])
print('# Model Params: {} FLOPs: {}'.format(params, flops))
# optimizer with lr sheduler
lr_start, lr_end = 1e-2, 1e-6
gamma = (lr_end / lr_start) ** (1 / epochs)
optimizer = optim.Adam(model.fc.parameters(), lr=lr_start, weight_decay=5e-6)
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=gamma)
# optimizer with no sheuduler
# optimizer = optim.Adam(model.fc.parameters(), lr=1e-3, weight_decay=1e-6)
loss_criterion = nn.CrossEntropyLoss()
results = {'train_loss': [], 'train_acc@1': [], 'train_acc@5': [],
'test_loss': [], 'test_acc@1': [], 'test_acc@5': []}
save_name = model_path.split('.pth')[0] + '_linear.csv'
best_acc = 0.0
for epoch in range(1, epochs + 1):
train_loss, train_acc_1, train_acc_5 = train_val(model, train_loader, optimizer)
scheduler.step()
results['train_loss'].append(train_loss)
results['train_acc@1'].append(train_acc_1)
results['train_acc@5'].append(train_acc_5)
test_loss, test_acc_1, test_acc_5 = train_val(model, test_loader, None)
results['test_loss'].append(test_loss)
results['test_acc@1'].append(test_acc_1)
results['test_acc@5'].append(test_acc_5)
# save statistics
# data_frame = pd.DataFrame(data=results, index=range(1, epoch + 1))
# data_frame.to_csv(save_name, index_label='epoch')
#if test_acc_1 > best_acc:
# best_acc = test_acc_1
# torch.save(model.state_dict(), 'results/linear_model.pth')
wandb.log(
{
"train_loss": train_loss,
"train_acc@1": train_acc_1,
"train_acc@5": train_acc_5,
"test_loss": test_loss,
"test_acc@1": test_acc_1,
"test_acc@5": test_acc_5
}
)
wandb.finish()
|