File size: 11,615 Bytes
803ef9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
import argparse
import json
import os
import random
import signal
import sys
import time
import urllib
from torch import nn, optim
from torchvision import models, datasets, transforms
import torch
import torchvision
import wandb
parser = argparse.ArgumentParser(description='Evaluate resnet50 features on ImageNet')
parser.add_argument('data', type=Path, metavar='DIR',
help='path to dataset')
parser.add_argument('pretrained', type=Path, metavar='FILE',
help='path to pretrained model')
parser.add_argument('--weights', default='freeze', type=str,
choices=('finetune', 'freeze'),
help='finetune or freeze resnet weights')
parser.add_argument('--train-percent', default=100, type=int,
choices=(100, 10, 1),
help='size of traing set in percent')
parser.add_argument('--workers', default=8, type=int, metavar='N',
help='number of data loader workers')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=256, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--lr-backbone', default=0.0, type=float, metavar='LR',
help='backbone base learning rate')
parser.add_argument('--lr-classifier', default=0.3, type=float, metavar='LR',
help='classifier base learning rate')
parser.add_argument('--weight-decay', default=1e-6, type=float, metavar='W',
help='weight decay')
parser.add_argument('--print-freq', default=100, type=int, metavar='N',
help='print frequency')
parser.add_argument('--checkpoint-dir', default='/mnt/store/wbandar1/projects/ssl-aug-artifacts/', type=Path,
metavar='DIR', help='path to checkpoint directory')
def main():
args = parser.parse_args()
if args.train_percent in {1, 10}:
args.train_files = urllib.request.urlopen(f'https://raw.githubusercontent.com/google-research/simclr/master/imagenet_subsets/{args.train_percent}percent.txt').readlines()
args.ngpus_per_node = torch.cuda.device_count()
if 'SLURM_JOB_ID' in os.environ:
signal.signal(signal.SIGUSR1, handle_sigusr1)
signal.signal(signal.SIGTERM, handle_sigterm)
# single-node distributed training
args.rank = 0
args.dist_url = f'tcp://localhost:{random.randrange(49152, 65535)}'
args.world_size = args.ngpus_per_node
torch.multiprocessing.spawn(main_worker, (args,), args.ngpus_per_node)
def main_worker(gpu, args):
args.rank += gpu
torch.distributed.init_process_group(
backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# initializing wandb
if args.rank == 0:
run = wandb.init(project="bt-in1k-eval", config=args, dir='/mnt/store/wbandar1/projects/ssl-aug-artifacts/wandb_logs/')
run_id = wandb.run.id
args.checkpoint_dir=Path(os.path.join(args.checkpoint_dir, run_id))
if args.rank == 0:
args.checkpoint_dir.mkdir(parents=True, exist_ok=True)
stats_file = open(args.checkpoint_dir / 'stats.txt', 'a', buffering=1)
print(' '.join(sys.argv))
print(' '.join(sys.argv), file=stats_file)
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
model = models.resnet50().cuda(gpu)
state_dict = torch.load(args.pretrained, map_location='cpu')
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
assert missing_keys == ['fc.weight', 'fc.bias'] and unexpected_keys == []
model.fc.weight.data.normal_(mean=0.0, std=0.01)
model.fc.bias.data.zero_()
if args.weights == 'freeze':
model.requires_grad_(False)
model.fc.requires_grad_(True)
classifier_parameters, model_parameters = [], []
for name, param in model.named_parameters():
if name in {'fc.weight', 'fc.bias'}:
classifier_parameters.append(param)
else:
model_parameters.append(param)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
criterion = nn.CrossEntropyLoss().cuda(gpu)
param_groups = [dict(params=classifier_parameters, lr=args.lr_classifier)]
if args.weights == 'finetune':
param_groups.append(dict(params=model_parameters, lr=args.lr_backbone))
optimizer = optim.SGD(param_groups, 0, momentum=0.9, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
# automatically resume from checkpoint if it exists
if (args.checkpoint_dir / 'checkpoint.pth').is_file():
ckpt = torch.load(args.checkpoint_dir / 'checkpoint.pth',
map_location='cpu')
start_epoch = ckpt['epoch']
best_acc = ckpt['best_acc']
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
scheduler.load_state_dict(ckpt['scheduler'])
else:
start_epoch = 0
best_acc = argparse.Namespace(top1=0, top5=0)
# Data loading code
traindir = args.data / 'train'
valdir = args.data / 'val'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(traindir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
if args.train_percent in {1, 10}:
train_dataset.samples = []
for fname in args.train_files:
fname = fname.decode().strip()
cls = fname.split('_')[0]
train_dataset.samples.append(
(traindir / cls / fname, train_dataset.class_to_idx[cls]))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
kwargs = dict(batch_size=args.batch_size // args.world_size, num_workers=args.workers, pin_memory=True)
train_loader = torch.utils.data.DataLoader(train_dataset, sampler=train_sampler, **kwargs)
val_loader = torch.utils.data.DataLoader(val_dataset, **kwargs)
start_time = time.time()
for epoch in range(start_epoch, args.epochs):
# train
if args.weights == 'finetune':
model.train()
elif args.weights == 'freeze':
model.eval()
else:
assert False
train_sampler.set_epoch(epoch)
for step, (images, target) in enumerate(train_loader, start=epoch * len(train_loader)):
output = model(images.cuda(gpu, non_blocking=True))
loss = criterion(output, target.cuda(gpu, non_blocking=True))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % args.print_freq == 0:
torch.distributed.reduce(loss.div_(args.world_size), 0)
if args.rank == 0:
pg = optimizer.param_groups
lr_classifier = pg[0]['lr']
lr_backbone = pg[1]['lr'] if len(pg) == 2 else 0
stats = dict(epoch=epoch, step=step, lr_backbone=lr_backbone,
lr_classifier=lr_classifier, loss=loss.item(),
time=int(time.time() - start_time))
print(json.dumps(stats))
print(json.dumps(stats), file=stats_file)
run.log(
{
"epoch": epoch,
"step": step,
"lr_backbone": lr_backbone,
"lr_classifier": lr_classifier,
"loss": loss.item(),
"time": int(time.time() - start_time),
}
)
# evaluate
model.eval()
if args.rank == 0:
top1 = AverageMeter('Acc@1')
top5 = AverageMeter('Acc@5')
with torch.no_grad():
for images, target in val_loader:
output = model(images.cuda(gpu, non_blocking=True))
acc1, acc5 = accuracy(output, target.cuda(gpu, non_blocking=True), topk=(1, 5))
top1.update(acc1[0].item(), images.size(0))
top5.update(acc5[0].item(), images.size(0))
best_acc.top1 = max(best_acc.top1, top1.avg)
best_acc.top5 = max(best_acc.top5, top5.avg)
stats = dict(epoch=epoch, acc1=top1.avg, acc5=top5.avg, best_acc1=best_acc.top1, best_acc5=best_acc.top5)
print(json.dumps(stats))
print(json.dumps(stats), file=stats_file)
run.log(
{
"epoch": epoch,
"eval_acc1": top1.avg,
"eval_acc5": top5.avg,
"eval_best_acc1": best_acc.top1,
"eval_best_acc5": best_acc.top5,
}
)
# sanity check
if args.weights == 'freeze':
reference_state_dict = torch.load(args.pretrained, map_location='cpu')
model_state_dict = model.module.state_dict()
for k in reference_state_dict:
assert torch.equal(model_state_dict[k].cpu(), reference_state_dict[k]), k
scheduler.step()
if args.rank == 0:
state = dict(
epoch=epoch + 1, best_acc=best_acc, model=model.state_dict(),
optimizer=optimizer.state_dict(), scheduler=scheduler.state_dict())
torch.save(state, args.checkpoint_dir / 'checkpoint.pth')
wandb.finish()
def handle_sigusr1(signum, frame):
os.system(f'scontrol requeue {os.getenv("SLURM_JOB_ID")}')
exit()
def handle_sigterm(signum, frame):
pass
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main() |