mix-bt / evaluate_imagenet.py
wgcban's picture
Upload 98 files
803ef9e
raw
history blame
11.6 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
import argparse
import json
import os
import random
import signal
import sys
import time
import urllib
from torch import nn, optim
from torchvision import models, datasets, transforms
import torch
import torchvision
import wandb
parser = argparse.ArgumentParser(description='Evaluate resnet50 features on ImageNet')
parser.add_argument('data', type=Path, metavar='DIR',
help='path to dataset')
parser.add_argument('pretrained', type=Path, metavar='FILE',
help='path to pretrained model')
parser.add_argument('--weights', default='freeze', type=str,
choices=('finetune', 'freeze'),
help='finetune or freeze resnet weights')
parser.add_argument('--train-percent', default=100, type=int,
choices=(100, 10, 1),
help='size of traing set in percent')
parser.add_argument('--workers', default=8, type=int, metavar='N',
help='number of data loader workers')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=256, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--lr-backbone', default=0.0, type=float, metavar='LR',
help='backbone base learning rate')
parser.add_argument('--lr-classifier', default=0.3, type=float, metavar='LR',
help='classifier base learning rate')
parser.add_argument('--weight-decay', default=1e-6, type=float, metavar='W',
help='weight decay')
parser.add_argument('--print-freq', default=100, type=int, metavar='N',
help='print frequency')
parser.add_argument('--checkpoint-dir', default='/mnt/store/wbandar1/projects/ssl-aug-artifacts/', type=Path,
metavar='DIR', help='path to checkpoint directory')
def main():
args = parser.parse_args()
if args.train_percent in {1, 10}:
args.train_files = urllib.request.urlopen(f'https://raw.githubusercontent.com/google-research/simclr/master/imagenet_subsets/{args.train_percent}percent.txt').readlines()
args.ngpus_per_node = torch.cuda.device_count()
if 'SLURM_JOB_ID' in os.environ:
signal.signal(signal.SIGUSR1, handle_sigusr1)
signal.signal(signal.SIGTERM, handle_sigterm)
# single-node distributed training
args.rank = 0
args.dist_url = f'tcp://localhost:{random.randrange(49152, 65535)}'
args.world_size = args.ngpus_per_node
torch.multiprocessing.spawn(main_worker, (args,), args.ngpus_per_node)
def main_worker(gpu, args):
args.rank += gpu
torch.distributed.init_process_group(
backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# initializing wandb
if args.rank == 0:
run = wandb.init(project="bt-in1k-eval", config=args, dir='/mnt/store/wbandar1/projects/ssl-aug-artifacts/wandb_logs/')
run_id = wandb.run.id
args.checkpoint_dir=Path(os.path.join(args.checkpoint_dir, run_id))
if args.rank == 0:
args.checkpoint_dir.mkdir(parents=True, exist_ok=True)
stats_file = open(args.checkpoint_dir / 'stats.txt', 'a', buffering=1)
print(' '.join(sys.argv))
print(' '.join(sys.argv), file=stats_file)
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
model = models.resnet50().cuda(gpu)
state_dict = torch.load(args.pretrained, map_location='cpu')
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
assert missing_keys == ['fc.weight', 'fc.bias'] and unexpected_keys == []
model.fc.weight.data.normal_(mean=0.0, std=0.01)
model.fc.bias.data.zero_()
if args.weights == 'freeze':
model.requires_grad_(False)
model.fc.requires_grad_(True)
classifier_parameters, model_parameters = [], []
for name, param in model.named_parameters():
if name in {'fc.weight', 'fc.bias'}:
classifier_parameters.append(param)
else:
model_parameters.append(param)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
criterion = nn.CrossEntropyLoss().cuda(gpu)
param_groups = [dict(params=classifier_parameters, lr=args.lr_classifier)]
if args.weights == 'finetune':
param_groups.append(dict(params=model_parameters, lr=args.lr_backbone))
optimizer = optim.SGD(param_groups, 0, momentum=0.9, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
# automatically resume from checkpoint if it exists
if (args.checkpoint_dir / 'checkpoint.pth').is_file():
ckpt = torch.load(args.checkpoint_dir / 'checkpoint.pth',
map_location='cpu')
start_epoch = ckpt['epoch']
best_acc = ckpt['best_acc']
model.load_state_dict(ckpt['model'])
optimizer.load_state_dict(ckpt['optimizer'])
scheduler.load_state_dict(ckpt['scheduler'])
else:
start_epoch = 0
best_acc = argparse.Namespace(top1=0, top5=0)
# Data loading code
traindir = args.data / 'train'
valdir = args.data / 'val'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(traindir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
if args.train_percent in {1, 10}:
train_dataset.samples = []
for fname in args.train_files:
fname = fname.decode().strip()
cls = fname.split('_')[0]
train_dataset.samples.append(
(traindir / cls / fname, train_dataset.class_to_idx[cls]))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
kwargs = dict(batch_size=args.batch_size // args.world_size, num_workers=args.workers, pin_memory=True)
train_loader = torch.utils.data.DataLoader(train_dataset, sampler=train_sampler, **kwargs)
val_loader = torch.utils.data.DataLoader(val_dataset, **kwargs)
start_time = time.time()
for epoch in range(start_epoch, args.epochs):
# train
if args.weights == 'finetune':
model.train()
elif args.weights == 'freeze':
model.eval()
else:
assert False
train_sampler.set_epoch(epoch)
for step, (images, target) in enumerate(train_loader, start=epoch * len(train_loader)):
output = model(images.cuda(gpu, non_blocking=True))
loss = criterion(output, target.cuda(gpu, non_blocking=True))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % args.print_freq == 0:
torch.distributed.reduce(loss.div_(args.world_size), 0)
if args.rank == 0:
pg = optimizer.param_groups
lr_classifier = pg[0]['lr']
lr_backbone = pg[1]['lr'] if len(pg) == 2 else 0
stats = dict(epoch=epoch, step=step, lr_backbone=lr_backbone,
lr_classifier=lr_classifier, loss=loss.item(),
time=int(time.time() - start_time))
print(json.dumps(stats))
print(json.dumps(stats), file=stats_file)
run.log(
{
"epoch": epoch,
"step": step,
"lr_backbone": lr_backbone,
"lr_classifier": lr_classifier,
"loss": loss.item(),
"time": int(time.time() - start_time),
}
)
# evaluate
model.eval()
if args.rank == 0:
top1 = AverageMeter('Acc@1')
top5 = AverageMeter('Acc@5')
with torch.no_grad():
for images, target in val_loader:
output = model(images.cuda(gpu, non_blocking=True))
acc1, acc5 = accuracy(output, target.cuda(gpu, non_blocking=True), topk=(1, 5))
top1.update(acc1[0].item(), images.size(0))
top5.update(acc5[0].item(), images.size(0))
best_acc.top1 = max(best_acc.top1, top1.avg)
best_acc.top5 = max(best_acc.top5, top5.avg)
stats = dict(epoch=epoch, acc1=top1.avg, acc5=top5.avg, best_acc1=best_acc.top1, best_acc5=best_acc.top5)
print(json.dumps(stats))
print(json.dumps(stats), file=stats_file)
run.log(
{
"epoch": epoch,
"eval_acc1": top1.avg,
"eval_acc5": top5.avg,
"eval_best_acc1": best_acc.top1,
"eval_best_acc5": best_acc.top5,
}
)
# sanity check
if args.weights == 'freeze':
reference_state_dict = torch.load(args.pretrained, map_location='cpu')
model_state_dict = model.module.state_dict()
for k in reference_state_dict:
assert torch.equal(model_state_dict[k].cpu(), reference_state_dict[k]), k
scheduler.step()
if args.rank == 0:
state = dict(
epoch=epoch + 1, best_acc=best_acc, model=model.state_dict(),
optimizer=optimizer.state_dict(), scheduler=scheduler.state_dict())
torch.save(state, args.checkpoint_dir / 'checkpoint.pth')
wandb.finish()
def handle_sigusr1(signum, frame):
os.system(f'scontrol requeue {os.getenv("SLURM_JOB_ID")}')
exit()
def handle_sigterm(signum, frame):
pass
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()