mix-bt / evaluate_transfer.py
wgcban's picture
Upload 98 files
803ef9e
raw
history blame
7.56 kB
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from thop import profile, clever_format
from torch.utils.data import DataLoader
from transfer_datasets import TRANSFER_DATASET
import torchvision.transforms as transforms
from data_statistics import get_data_mean_and_stdev, get_data_nclass
from tqdm import tqdm
import utils
import wandb
import torchvision
def load_transform(dataset, size=32):
mean, std = get_data_mean_and_stdev(dataset)
transform = transforms.Compose([
transforms.Resize((size, size)),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)])
return transform
class Net(nn.Module):
def __init__(self, num_class, pretrained_path, dataset, arch):
super(Net, self).__init__()
if arch=='resnet18':
embedding_size = 512
elif arch=='resnet50':
embedding_size = 2048
else:
raise NotImplementedError
# encoder
from model import Model
self.f = Model(dataset=dataset, arch=arch).f
# classifier
self.fc = nn.Linear(embedding_size, num_class, bias=True)
self.load_state_dict(torch.load(pretrained_path, map_location='cpu'), strict=False)
def forward(self, x):
x = self.f(x)
feature = torch.flatten(x, start_dim=1)
out = self.fc(feature)
return out
# train or test for one epoch
def train_val(net, data_loader, train_optimizer):
is_train = train_optimizer is not None
net.train() if is_train else net.eval()
total_loss, total_correct_1, total_correct_5, total_num, data_bar = 0.0, 0.0, 0.0, 0, tqdm(data_loader)
with (torch.enable_grad() if is_train else torch.no_grad()):
for data, target in data_bar:
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
out = net(data)
loss = loss_criterion(out, target)
if is_train:
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += data.size(0)
total_loss += loss.item() * data.size(0)
prediction = torch.argsort(out, dim=-1, descending=True)
total_correct_1 += torch.sum((prediction[:, 0:1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
total_correct_5 += torch.sum((prediction[:, 0:5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
data_bar.set_description('{} Epoch: [{}/{}] Loss: {:.4f} ACC@1: {:.2f}% ACC@5: {:.2f}% model: {}'
.format('Train' if is_train else 'Test', epoch, epochs, total_loss / total_num,
total_correct_1 / total_num * 100, total_correct_5 / total_num * 100,
model_path.split('/')[-1]))
return total_loss / total_num, total_correct_1 / total_num * 100, total_correct_5 / total_num * 100
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Linear Evaluation')
parser.add_argument('--dataset', default='cifar10', type=str, help='Pre-trained dataset.', choices=['cifar10', 'cifar100', 'stl10', 'tiny_imagenet'])
parser.add_argument('--transfer_dataset', default='cifar10', type=str, help='Transfer dataset (i.e., testing dataset)', choices=['cifar10', 'cifar100', 'stl-10', 'aircraft', 'cu_birds', 'dtd', 'fashionmnist', 'mnist', 'traffic_sign', 'vgg_flower'])
parser.add_argument('--arch', default='resnet50', type=str, help='Backbone architecture for experiments', choices=['resnet50', 'resnet18'])
parser.add_argument('--model_path', type=str, default='results/Barlow_Twins/0.005_64_128_model.pth',
help='The base string of the pretrained model path')
parser.add_argument('--batch_size', type=int, default=128, help='Number of images in each mini-batch')
parser.add_argument('--epochs', type=int, default=100, help='Number of sweeps over the dataset to train')
parser.add_argument('--screen', type=str, help='screen session id')
# wandb related args
parser.add_argument('--wandb_group', type=str, help='group for wandb')
args = parser.parse_args()
wandb.init(project=f"Barlow-Twins-MixUp-TransferLearn-[{args.dataset}-to-X]-{args.arch}", config=args, dir='/data/wbandar1/projects/ssl-aug-artifacts/wandb_logs/', group=args.wandb_group, name=f'{args.transfer_dataset}')
run_id = wandb.run.id
model_path, batch_size, epochs = args.model_path, args.batch_size, args.epochs
dataset = args.dataset
transfer_dataset = args.transfer_dataset
if dataset in ['cifar10', 'cifar100']:
print("reshaping data into 32x32")
resize = 32
else:
print("reshaping data into 64x64")
resize = 64
train_data = TRANSFER_DATASET[args.transfer_dataset](train=True, image_transforms=load_transform(args.transfer_dataset, resize))
test_data = TRANSFER_DATASET[args.transfer_dataset](train=False, image_transforms=load_transform(args.transfer_dataset, resize))
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True)
model = Net(num_class=get_data_nclass(args.transfer_dataset), pretrained_path=model_path, dataset=dataset, arch=args.arch).cuda()
for param in model.f.parameters():
param.requires_grad = False
# optimizer with lr sheduler
# lr_start, lr_end = 1e-2, 1e-6
# gamma = (lr_end / lr_start) ** (1 / epochs)
# optimizer = optim.Adam(model.fc.parameters(), lr=lr_start, weight_decay=5e-6)
# scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=gamma)
# adpoted from
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [60, 80], gamma=0.1)
# optimizer with no sheuduler
# optimizer = optim.Adam(model.fc.parameters(), lr=1e-3, weight_decay=1e-6)
loss_criterion = nn.CrossEntropyLoss()
results = {'train_loss': [], 'train_acc@1': [], 'train_acc@5': [],
'test_loss': [], 'test_acc@1': [], 'test_acc@5': []}
save_name = model_path.split('.pth')[0] + '_linear.csv'
best_acc = 0.0
for epoch in range(1, epochs + 1):
train_loss, train_acc_1, train_acc_5 = train_val(model, train_loader, optimizer)
results['train_loss'].append(train_loss)
results['train_acc@1'].append(train_acc_1)
results['train_acc@5'].append(train_acc_5)
test_loss, test_acc_1, test_acc_5 = train_val(model, test_loader, None)
results['test_loss'].append(test_loss)
results['test_acc@1'].append(test_acc_1)
results['test_acc@5'].append(test_acc_5)
# save statistics
# data_frame = pd.DataFrame(data=results, index=range(1, epoch + 1))
# data_frame.to_csv(save_name, index_label='epoch')
if test_acc_1 > best_acc:
best_acc = test_acc_1
wandb.log(
{
"train_loss": train_loss,
"train_acc@1": train_acc_1,
"train_acc@5": train_acc_5,
"test_loss": test_loss,
"test_acc@1": test_acc_1,
"test_acc@5": test_acc_5,
"best_acc": best_acc
}
)
scheduler.step()
wandb.finish()