File size: 2,217 Bytes
074ef30 4b1130d 074ef30 4b1130d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
license: apache-2.0
---
This is a replicate of https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
But in safetensor format
# Prompt Template
To use the prompt for further training and inference, please use [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) format, with `<|im_start|>` and `<|im_end|>` tokens added to support this.
This means that, e.g., in [oobabooga](https://github.com/oobabooga/text-generation-webui/) the "`MPT-Chat`" instruction template should work, as it also uses ChatML.
This formatting is also available via a pre-defined [Transformers chat template](https://huggingface.co/docs/transformers/main/chat_templating),
which means that lists of messages can be formatted for you with the `apply_chat_template()` method:
```python
chat = [
{"role": "system", "content": "You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!"}
{"role": "user", "content": "How are you?"},
{"role": "assistant", "content": "I am doing well!"},
{"role": "user", "content": "Please tell me about how mistral winds have attracted super-orcas."},
]
tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
which will yield:
```
<|im_start|>system
You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!
<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
I am doing well!<|im_end|>
<|im_start|>user
Please tell me about how mistral winds have attracted super-orcas.<|im_end|>
<|im_start|>assistant
```
If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized
and formatted conversation ready to pass to `model.generate()`.
# Inference
See [this notebook](https://colab.research.google.com/drive/1yZlLSifCGELAX5GN582kZypHCv0uJuNX?usp=sharing) for inference details.
Note that you need the development snapshot of Transformers currently, as support for Mistral hasn't been released into PyPI yet:
```
pip install git+https://github.com/huggingface/transformers
```
|