whitemouse84
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,706 +1,718 @@
|
|
1 |
-
---
|
2 |
-
base_model: cointegrated/LaBSE-en-ru
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
-
|
17 |
-
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
- sentence-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
sentences:
|
30 |
-
- been nice talking to you
|
31 |
-
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
-
|
46 |
-
|
47 |
-
|
48 |
-
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
- type:
|
85 |
-
value: 0.
|
86 |
-
name: Pearson
|
87 |
-
- type:
|
88 |
-
value: 0.
|
89 |
-
name: Spearman
|
90 |
-
- type:
|
91 |
-
value: 0.
|
92 |
-
name: Pearson
|
93 |
-
- type:
|
94 |
-
value: 0.
|
95 |
-
name: Spearman
|
96 |
-
- type:
|
97 |
-
value: 0.
|
98 |
-
name: Pearson
|
99 |
-
- type:
|
100 |
-
value: 0.
|
101 |
-
name: Spearman
|
102 |
-
|
103 |
-
|
104 |
-
name:
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
name:
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
- type:
|
132 |
-
value: 0.
|
133 |
-
name: Pearson
|
134 |
-
- type:
|
135 |
-
value: 0.
|
136 |
-
name: Spearman
|
137 |
-
- type:
|
138 |
-
value: 0.
|
139 |
-
name: Pearson
|
140 |
-
- type:
|
141 |
-
value: 0.
|
142 |
-
name: Spearman
|
143 |
-
- type:
|
144 |
-
value: 0.
|
145 |
-
name: Pearson
|
146 |
-
- type:
|
147 |
-
value: 0.
|
148 |
-
name: Spearman
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
- **
|
171 |
-
- **
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
)
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
#
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
266 |
-
|
267 |
-
|
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
278 |
-
|
279 |
-
|
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
*
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
*
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
*
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
-
|
348 |
-
-
|
349 |
-
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
- `
|
356 |
-
- `
|
357 |
-
- `
|
358 |
-
- `
|
359 |
-
- `
|
360 |
-
- `
|
361 |
-
- `
|
362 |
-
- `
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
- `
|
368 |
-
- `
|
369 |
-
- `
|
370 |
-
- `
|
371 |
-
- `
|
372 |
-
- `
|
373 |
-
- `
|
374 |
-
- `
|
375 |
-
- `
|
376 |
-
- `
|
377 |
-
- `
|
378 |
-
- `
|
379 |
-
- `
|
380 |
-
- `
|
381 |
-
- `
|
382 |
-
- `
|
383 |
-
- `
|
384 |
-
- `
|
385 |
-
- `
|
386 |
-
- `
|
387 |
-
- `
|
388 |
-
- `
|
389 |
-
- `
|
390 |
-
- `
|
391 |
-
- `
|
392 |
-
- `
|
393 |
-
- `
|
394 |
-
- `
|
395 |
-
- `
|
396 |
-
- `
|
397 |
-
- `
|
398 |
-
- `
|
399 |
-
- `
|
400 |
-
- `
|
401 |
-
- `
|
402 |
-
- `
|
403 |
-
- `
|
404 |
-
- `
|
405 |
-
- `
|
406 |
-
- `
|
407 |
-
- `
|
408 |
-
- `
|
409 |
-
- `
|
410 |
-
- `
|
411 |
-
- `
|
412 |
-
- `
|
413 |
-
- `
|
414 |
-
- `
|
415 |
-
- `
|
416 |
-
- `
|
417 |
-
- `
|
418 |
-
- `
|
419 |
-
- `
|
420 |
-
- `
|
421 |
-
- `
|
422 |
-
- `
|
423 |
-
- `
|
424 |
-
- `
|
425 |
-
- `
|
426 |
-
- `
|
427 |
-
- `
|
428 |
-
- `
|
429 |
-
- `
|
430 |
-
- `
|
431 |
-
- `
|
432 |
-
- `
|
433 |
-
- `
|
434 |
-
- `
|
435 |
-
- `
|
436 |
-
- `
|
437 |
-
- `
|
438 |
-
- `
|
439 |
-
- `
|
440 |
-
- `
|
441 |
-
- `
|
442 |
-
- `
|
443 |
-
- `
|
444 |
-
- `
|
445 |
-
- `
|
446 |
-
- `
|
447 |
-
- `
|
448 |
-
- `
|
449 |
-
- `
|
450 |
-
- `
|
451 |
-
- `
|
452 |
-
- `
|
453 |
-
- `
|
454 |
-
- `
|
455 |
-
- `
|
456 |
-
- `
|
457 |
-
- `
|
458 |
-
- `
|
459 |
-
- `
|
460 |
-
- `
|
461 |
-
- `
|
462 |
-
- `
|
463 |
-
- `
|
464 |
-
- `
|
465 |
-
- `
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
|
485 |
-
|
486 |
-
| 0
|
487 |
-
| 0.
|
488 |
-
| 0.
|
489 |
-
| 0.
|
490 |
-
| 0.
|
491 |
-
| 0.
|
492 |
-
| 0.
|
493 |
-
| 0.
|
494 |
-
| 0.
|
495 |
-
| 0.
|
496 |
-
| 0.
|
497 |
-
| 0.
|
498 |
-
| 0.
|
499 |
-
| 0.
|
500 |
-
| 0.
|
501 |
-
| 0.
|
502 |
-
| 0.
|
503 |
-
| 0.
|
504 |
-
| 0.
|
505 |
-
| 0.
|
506 |
-
| 0.
|
507 |
-
| 0.
|
508 |
-
| 0.
|
509 |
-
| 0.
|
510 |
-
| 0.
|
511 |
-
| 0.
|
512 |
-
| 0.
|
513 |
-
| 0.
|
514 |
-
| 0.
|
515 |
-
| 0.
|
516 |
-
| 0.
|
517 |
-
| 0.
|
518 |
-
| 0.
|
519 |
-
| 0.
|
520 |
-
| 0.
|
521 |
-
| 0.
|
522 |
-
| 0.
|
523 |
-
| 0.
|
524 |
-
| 0.
|
525 |
-
| 0.
|
526 |
-
| 0.
|
527 |
-
| 0.
|
528 |
-
| 0.
|
529 |
-
| 0.
|
530 |
-
| 0.
|
531 |
-
| 0.
|
532 |
-
| 0.
|
533 |
-
| 0.
|
534 |
-
| 0.
|
535 |
-
| 0.
|
536 |
-
| 0.
|
537 |
-
| 0.
|
538 |
-
| 0.
|
539 |
-
| 0.
|
540 |
-
| 0.
|
541 |
-
| 0.
|
542 |
-
| 0.
|
543 |
-
| 0.
|
544 |
-
| 0.
|
545 |
-
| 0.
|
546 |
-
| 0.
|
547 |
-
| 0.
|
548 |
-
| 0.
|
549 |
-
| 0.
|
550 |
-
| 0.
|
551 |
-
| 0.
|
552 |
-
| 0.
|
553 |
-
| 0.
|
554 |
-
| 0.
|
555 |
-
| 0.
|
556 |
-
| 0.
|
557 |
-
| 0.
|
558 |
-
| 0.
|
559 |
-
| 0.
|
560 |
-
| 0.
|
561 |
-
| 0.
|
562 |
-
| 0.
|
563 |
-
| 0.
|
564 |
-
| 0.
|
565 |
-
| 0.
|
566 |
-
| 0.
|
567 |
-
| 0.
|
568 |
-
| 0.
|
569 |
-
| 0.
|
570 |
-
| 0.
|
571 |
-
| 0.
|
572 |
-
| 0.
|
573 |
-
| 0.
|
574 |
-
| 0.
|
575 |
-
| 0.
|
576 |
-
| 0.
|
577 |
-
| 0.
|
578 |
-
| 0.
|
579 |
-
| 0.
|
580 |
-
| 0.
|
581 |
-
| 0.
|
582 |
-
| 0.
|
583 |
-
| 0.
|
584 |
-
| 0.
|
585 |
-
| 0.
|
586 |
-
| 0.
|
587 |
-
| 0.
|
588 |
-
| 0.
|
589 |
-
| 0.
|
590 |
-
| 0.
|
591 |
-
| 0.
|
592 |
-
| 0.
|
593 |
-
| 0.
|
594 |
-
| 0.
|
595 |
-
| 0.
|
596 |
-
| 0.
|
597 |
-
| 0.
|
598 |
-
| 0.
|
599 |
-
| 0.
|
600 |
-
| 0.
|
601 |
-
| 0.
|
602 |
-
| 0.
|
603 |
-
| 0.
|
604 |
-
| 0.
|
605 |
-
| 0.
|
606 |
-
| 0.
|
607 |
-
| 0.
|
608 |
-
| 0.
|
609 |
-
| 0.
|
610 |
-
| 0.
|
611 |
-
| 0.
|
612 |
-
| 0.
|
613 |
-
| 0.
|
614 |
-
| 0.
|
615 |
-
| 0.
|
616 |
-
| 0.
|
617 |
-
| 0.
|
618 |
-
| 0.
|
619 |
-
| 0.
|
620 |
-
| 0.
|
621 |
-
| 0.
|
622 |
-
| 0.
|
623 |
-
| 0.
|
624 |
-
| 0.
|
625 |
-
| 0.
|
626 |
-
| 0.
|
627 |
-
| 0.
|
628 |
-
| 0.
|
629 |
-
| 0.
|
630 |
-
| 0.
|
631 |
-
| 0.
|
632 |
-
| 0.
|
633 |
-
| 0.
|
634 |
-
| 0.
|
635 |
-
| 0.
|
636 |
-
| 0.
|
637 |
-
| 0.
|
638 |
-
| 0.
|
639 |
-
| 0.
|
640 |
-
| 0.
|
641 |
-
| 0.
|
642 |
-
| 0.
|
643 |
-
| 0.
|
644 |
-
| 0.
|
645 |
-
| 0.
|
646 |
-
|
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
-
|
653 |
-
|
654 |
-
-
|
655 |
-
-
|
656 |
-
|
657 |
-
-
|
658 |
-
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
<!--
|
703 |
-
##
|
704 |
-
|
705 |
-
*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
706 |
-->
|
|
|
1 |
+
---
|
2 |
+
base_model: cointegrated/LaBSE-en-ru
|
3 |
+
language:
|
4 |
+
- ru
|
5 |
+
- en
|
6 |
+
library_name: sentence-transformers
|
7 |
+
metrics:
|
8 |
+
- pearson_cosine
|
9 |
+
- spearman_cosine
|
10 |
+
- pearson_manhattan
|
11 |
+
- spearman_manhattan
|
12 |
+
- pearson_euclidean
|
13 |
+
- spearman_euclidean
|
14 |
+
- pearson_dot
|
15 |
+
- spearman_dot
|
16 |
+
- pearson_max
|
17 |
+
- spearman_max
|
18 |
+
- negative_mse
|
19 |
+
pipeline_tag: sentence-similarity
|
20 |
+
tags:
|
21 |
+
- sentence-transformers
|
22 |
+
- sentence-similarity
|
23 |
+
- feature-extraction
|
24 |
+
- generated_from_trainer
|
25 |
+
- dataset_size:10975066
|
26 |
+
- loss:MSELoss
|
27 |
+
widget:
|
28 |
+
- source_sentence: Такие лодки строились, чтобы получить быстрый доступ к приходящим судам.
|
29 |
+
sentences:
|
30 |
+
- been nice talking to you
|
31 |
+
- >-
|
32 |
+
Нельзя ставить под сомнение притязания клиента, если не были предприняты
|
33 |
+
шаги.
|
34 |
+
- >-
|
35 |
+
Dharangaon Railway Station serves Dharangaon in Jalgaon district in the
|
36 |
+
Indian state of Maharashtra.
|
37 |
+
- source_sentence: >-
|
38 |
+
Если прилагательные смягчают этнические термины, существительные могут
|
39 |
+
сделать их жестче.
|
40 |
+
sentences:
|
41 |
+
- >-
|
42 |
+
Вслед за этим последовало секретное письмо А.Б.Чубайса об изъятии у МЦР,
|
43 |
+
переданного ему С.Н.Рерихом наследия.
|
44 |
+
- Coaches should not give young athletes a hard time.
|
45 |
+
- Эшкрофт хотел прослушивать сводки новостей снова и снова
|
46 |
+
- source_sentence: Земля была мягкой.
|
47 |
+
sentences:
|
48 |
+
- >-
|
49 |
+
По мере того, как самообладание покидало его, с��рдце его все больше
|
50 |
+
наполнялось тревогой.
|
51 |
+
- >-
|
52 |
+
Our borders and immigration system, including law enforcement, ought to send
|
53 |
+
a message of welcome, tolerance, and justice to members of immigrant
|
54 |
+
communities in the United States and in their countries of origin.
|
55 |
+
- >-
|
56 |
+
Начнут действовать льготные условия аренды земель, которые предназначены для
|
57 |
+
реализации инвестиционных проектов.
|
58 |
+
- source_sentence: >-
|
59 |
+
Что же касается рава Кука: мой рав лично знал его и много раз с теплотой
|
60 |
+
рассказывал мне о нем как о великом каббалисте.
|
61 |
+
sentences:
|
62 |
+
- Вдова Эдгара Эванса, его дети и мать получили 1500 фунтов стерлингов (
|
63 |
+
- Please do not make any changes to your address.
|
64 |
+
- Мы уже закончили все запланированные дела!
|
65 |
+
- source_sentence: See Name section.
|
66 |
+
sentences:
|
67 |
+
- >-
|
68 |
+
Ms. Packard is the voice of the female blood elf in the video game World of
|
69 |
+
Warcraft.
|
70 |
+
- >-
|
71 |
+
Основным функциональным элементом, реализующим функции управления
|
72 |
+
соединением, является абонентский терминал.
|
73 |
+
- Yeah, people who might not be hungry.
|
74 |
+
model-index:
|
75 |
+
- name: SentenceTransformer based on cointegrated/LaBSE-en-ru
|
76 |
+
results:
|
77 |
+
- task:
|
78 |
+
type: semantic-similarity
|
79 |
+
name: Semantic Similarity
|
80 |
+
dataset:
|
81 |
+
name: sts dev
|
82 |
+
type: sts-dev
|
83 |
+
metrics:
|
84 |
+
- type: pearson_cosine
|
85 |
+
value: 0.5305176535187099
|
86 |
+
name: Pearson Cosine
|
87 |
+
- type: spearman_cosine
|
88 |
+
value: 0.6347069834349862
|
89 |
+
name: Spearman Cosine
|
90 |
+
- type: pearson_manhattan
|
91 |
+
value: 0.5553415140113596
|
92 |
+
name: Pearson Manhattan
|
93 |
+
- type: spearman_manhattan
|
94 |
+
value: 0.6389336208598283
|
95 |
+
name: Spearman Manhattan
|
96 |
+
- type: pearson_euclidean
|
97 |
+
value: 0.5499910306125031
|
98 |
+
name: Pearson Euclidean
|
99 |
+
- type: spearman_euclidean
|
100 |
+
value: 0.6347073809507647
|
101 |
+
name: Spearman Euclidean
|
102 |
+
- type: pearson_dot
|
103 |
+
value: 0.5305176585564861
|
104 |
+
name: Pearson Dot
|
105 |
+
- type: spearman_dot
|
106 |
+
value: 0.6347078463557637
|
107 |
+
name: Spearman Dot
|
108 |
+
- type: pearson_max
|
109 |
+
value: 0.5553415140113596
|
110 |
+
name: Pearson Max
|
111 |
+
- type: spearman_max
|
112 |
+
value: 0.6389336208598283
|
113 |
+
name: Spearman Max
|
114 |
+
- task:
|
115 |
+
type: knowledge-distillation
|
116 |
+
name: Knowledge Distillation
|
117 |
+
dataset:
|
118 |
+
name: Unknown
|
119 |
+
type: unknown
|
120 |
+
metrics:
|
121 |
+
- type: negative_mse
|
122 |
+
value: -0.006337030936265364
|
123 |
+
name: Negative Mse
|
124 |
+
- task:
|
125 |
+
type: semantic-similarity
|
126 |
+
name: Semantic Similarity
|
127 |
+
dataset:
|
128 |
+
name: sts test
|
129 |
+
type: sts-test
|
130 |
+
metrics:
|
131 |
+
- type: pearson_cosine
|
132 |
+
value: 0.5042796836494269
|
133 |
+
name: Pearson Cosine
|
134 |
+
- type: spearman_cosine
|
135 |
+
value: 0.5986471772428711
|
136 |
+
name: Spearman Cosine
|
137 |
+
- type: pearson_manhattan
|
138 |
+
value: 0.522744495080616
|
139 |
+
name: Pearson Manhattan
|
140 |
+
- type: spearman_manhattan
|
141 |
+
value: 0.5983901280447074
|
142 |
+
name: Spearman Manhattan
|
143 |
+
- type: pearson_euclidean
|
144 |
+
value: 0.522721961447153
|
145 |
+
name: Pearson Euclidean
|
146 |
+
- type: spearman_euclidean
|
147 |
+
value: 0.5986471095414022
|
148 |
+
name: Spearman Euclidean
|
149 |
+
- type: pearson_dot
|
150 |
+
value: 0.504279685613151
|
151 |
+
name: Pearson Dot
|
152 |
+
- type: spearman_dot
|
153 |
+
value: 0.598648155615724
|
154 |
+
name: Spearman Dot
|
155 |
+
- type: pearson_max
|
156 |
+
value: 0.522744495080616
|
157 |
+
name: Pearson Max
|
158 |
+
- type: spearman_max
|
159 |
+
value: 0.598648155615724
|
160 |
+
name: Spearman Max
|
161 |
+
---
|
162 |
+
|
163 |
+
# SentenceTransformer based on cointegrated/LaBSE-en-ru
|
164 |
+
|
165 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
166 |
+
|
167 |
+
## Model Details
|
168 |
+
|
169 |
+
### Model Description
|
170 |
+
- **Model Type:** Sentence Transformer
|
171 |
+
- **Base model:** [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) <!-- at revision cf0714e606d4af551e14ad69a7929cd6b0da7f7e -->
|
172 |
+
- **Maximum Sequence Length:** 512 tokens
|
173 |
+
- **Output Dimensionality:** 768 tokens
|
174 |
+
- **Similarity Function:** Cosine Similarity
|
175 |
+
<!-- - **Training Dataset:** Unknown -->
|
176 |
+
<!-- - **Language:** Unknown -->
|
177 |
+
<!-- - **License:** Unknown -->
|
178 |
+
|
179 |
+
### Model Sources
|
180 |
+
|
181 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
182 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
183 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
184 |
+
|
185 |
+
### Full Model Architecture
|
186 |
+
|
187 |
+
```
|
188 |
+
SentenceTransformer(
|
189 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
190 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
191 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
192 |
+
(3): Normalize()
|
193 |
+
)
|
194 |
+
```
|
195 |
+
|
196 |
+
## Usage
|
197 |
+
|
198 |
+
### Direct Usage (Sentence Transformers)
|
199 |
+
|
200 |
+
First install the Sentence Transformers library:
|
201 |
+
|
202 |
+
```bash
|
203 |
+
pip install -U sentence-transformers
|
204 |
+
```
|
205 |
+
|
206 |
+
Then you can load this model and run inference.
|
207 |
+
```python
|
208 |
+
from sentence_transformers import SentenceTransformer
|
209 |
+
|
210 |
+
# Download from the 🤗 Hub
|
211 |
+
model = SentenceTransformer("whitemouse84/LaBSE-en-ru-distilled-each-third-layer")
|
212 |
+
# Run inference
|
213 |
+
sentences = [
|
214 |
+
'See Name section.',
|
215 |
+
'Ms. Packard is the voice of the female blood elf in the video game World of Warcraft.',
|
216 |
+
'Yeah, people who might not be hungry.',
|
217 |
+
]
|
218 |
+
embeddings = model.encode(sentences)
|
219 |
+
print(embeddings.shape)
|
220 |
+
# [3, 768]
|
221 |
+
|
222 |
+
# Get the similarity scores for the embeddings
|
223 |
+
similarities = model.similarity(embeddings, embeddings)
|
224 |
+
print(similarities.shape)
|
225 |
+
# [3, 3]
|
226 |
+
```
|
227 |
+
|
228 |
+
<!--
|
229 |
+
### Direct Usage (Transformers)
|
230 |
+
|
231 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
232 |
+
|
233 |
+
</details>
|
234 |
+
-->
|
235 |
+
|
236 |
+
<!--
|
237 |
+
### Downstream Usage (Sentence Transformers)
|
238 |
+
|
239 |
+
You can finetune this model on your own dataset.
|
240 |
+
|
241 |
+
<details><summary>Click to expand</summary>
|
242 |
+
|
243 |
+
</details>
|
244 |
+
-->
|
245 |
+
|
246 |
+
<!--
|
247 |
+
### Out-of-Scope Use
|
248 |
+
|
249 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
250 |
+
-->
|
251 |
+
|
252 |
+
## Evaluation
|
253 |
+
|
254 |
+
### Metrics
|
255 |
+
|
256 |
+
#### Semantic Similarity
|
257 |
+
* Dataset: `sts-dev`
|
258 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
259 |
+
|
260 |
+
| Metric | Value |
|
261 |
+
|:--------------------|:-----------|
|
262 |
+
| pearson_cosine | 0.5305 |
|
263 |
+
| **spearman_cosine** | **0.6347** |
|
264 |
+
| pearson_manhattan | 0.5553 |
|
265 |
+
| spearman_manhattan | 0.6389 |
|
266 |
+
| pearson_euclidean | 0.55 |
|
267 |
+
| spearman_euclidean | 0.6347 |
|
268 |
+
| pearson_dot | 0.5305 |
|
269 |
+
| spearman_dot | 0.6347 |
|
270 |
+
| pearson_max | 0.5553 |
|
271 |
+
| spearman_max | 0.6389 |
|
272 |
+
|
273 |
+
#### Knowledge Distillation
|
274 |
+
|
275 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
276 |
+
|
277 |
+
| Metric | Value |
|
278 |
+
|:-----------------|:------------|
|
279 |
+
| **negative_mse** | **-0.0063** |
|
280 |
+
|
281 |
+
#### Semantic Similarity
|
282 |
+
* Dataset: `sts-test`
|
283 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
284 |
+
|
285 |
+
| Metric | Value |
|
286 |
+
|:--------------------|:-----------|
|
287 |
+
| pearson_cosine | 0.5043 |
|
288 |
+
| **spearman_cosine** | **0.5986** |
|
289 |
+
| pearson_manhattan | 0.5227 |
|
290 |
+
| spearman_manhattan | 0.5984 |
|
291 |
+
| pearson_euclidean | 0.5227 |
|
292 |
+
| spearman_euclidean | 0.5986 |
|
293 |
+
| pearson_dot | 0.5043 |
|
294 |
+
| spearman_dot | 0.5986 |
|
295 |
+
| pearson_max | 0.5227 |
|
296 |
+
| spearman_max | 0.5986 |
|
297 |
+
|
298 |
+
<!--
|
299 |
+
## Bias, Risks and Limitations
|
300 |
+
|
301 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
302 |
+
-->
|
303 |
+
|
304 |
+
<!--
|
305 |
+
### Recommendations
|
306 |
+
|
307 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
308 |
+
-->
|
309 |
+
|
310 |
+
## Training Details
|
311 |
+
|
312 |
+
### Training Dataset
|
313 |
+
|
314 |
+
#### Unnamed Dataset
|
315 |
+
|
316 |
+
|
317 |
+
* Size: 10,975,066 training samples
|
318 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
319 |
+
* Approximate statistics based on the first 1000 samples:
|
320 |
+
| | sentence | label |
|
321 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
322 |
+
| type | string | list |
|
323 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 26.93 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
324 |
+
* Samples:
|
325 |
+
| sentence | label |
|
326 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
|
327 |
+
| <code>It is based on the Java Persistence API (JPA), but it does not strictly follow the JSR 338 Specification, as it implements different design patterns and technologies.</code> | <code>[-0.012331949546933174, -0.04570527374744415, -0.024963658303022385, -0.03620213270187378, 0.022556383162736893, ...]</code> |
|
328 |
+
| <code>Покупаем вторичное сырье в Каунасе (Переработка вторичного сырья) - Алфенас АНД КО, ЗАО на Bizorg.</code> | <code>[-0.07498518377542496, -0.01913534104824066, -0.01797042042016983, 0.048263177275657654, -0.00016611881437711418, ...]</code> |
|
329 |
+
| <code>At the Equal Justice Conference ( EJC ) held in March 2001 in San Diego , LSC and the Project for the Future of Equal Justice held the second Case Management Software pre-conference .</code> | <code>[0.03870972990989685, -0.0638347640633583, -0.01696585863828659, -0.043612319976091385, -0.048241738229990005, ...]</code> |
|
330 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
331 |
+
|
332 |
+
### Evaluation Dataset
|
333 |
+
|
334 |
+
#### Unnamed Dataset
|
335 |
+
|
336 |
+
|
337 |
+
* Size: 10,000 evaluation samples
|
338 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
339 |
+
* Approximate statistics based on the first 1000 samples:
|
340 |
+
| | sentence | label |
|
341 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
342 |
+
| type | string | list |
|
343 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 24.18 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
344 |
+
* Samples:
|
345 |
+
| sentence | label |
|
346 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
|
347 |
+
| <code>The Canadian Canoe Museum is a museum dedicated to canoes located in Peterborough, Ontario, Canada.</code> | <code>[-0.05444105342030525, -0.03650881350040436, -0.041163671761751175, -0.010616903193295002, -0.04094529151916504, ...]</code> |
|
348 |
+
| <code>И мне нравилось, что я одновременно зарабатываю и смотрю бои».</code> | <code>[-0.03404555842280388, 0.028203096240758896, -0.056121889501810074, -0.0591997392475605, -0.05523117259144783, ...]</code> |
|
349 |
+
| <code>Ну, а на следующий день, разумеется, Президент Кеннеди объявил блокаду Кубы, и наши корабли остановили у кубинских берегов направлявшийся на Кубу российский корабль, и у него на борту нашли ракеты.</code> | <code>[-0.008193841204047203, 0.00694894278421998, -0.03027420863509178, -0.03290146216750145, 0.01425305474549532, ...]</code> |
|
350 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
351 |
+
|
352 |
+
### Training Hyperparameters
|
353 |
+
#### Non-Default Hyperparameters
|
354 |
+
|
355 |
+
- `eval_strategy`: steps
|
356 |
+
- `per_device_train_batch_size`: 64
|
357 |
+
- `per_device_eval_batch_size`: 64
|
358 |
+
- `learning_rate`: 0.0001
|
359 |
+
- `num_train_epochs`: 1
|
360 |
+
- `warmup_ratio`: 0.1
|
361 |
+
- `fp16`: True
|
362 |
+
- `load_best_model_at_end`: True
|
363 |
+
|
364 |
+
#### All Hyperparameters
|
365 |
+
<details><summary>Click to expand</summary>
|
366 |
+
|
367 |
+
- `overwrite_output_dir`: False
|
368 |
+
- `do_predict`: False
|
369 |
+
- `eval_strategy`: steps
|
370 |
+
- `prediction_loss_only`: True
|
371 |
+
- `per_device_train_batch_size`: 64
|
372 |
+
- `per_device_eval_batch_size`: 64
|
373 |
+
- `per_gpu_train_batch_size`: None
|
374 |
+
- `per_gpu_eval_batch_size`: None
|
375 |
+
- `gradient_accumulation_steps`: 1
|
376 |
+
- `eval_accumulation_steps`: None
|
377 |
+
- `torch_empty_cache_steps`: None
|
378 |
+
- `learning_rate`: 0.0001
|
379 |
+
- `weight_decay`: 0.0
|
380 |
+
- `adam_beta1`: 0.9
|
381 |
+
- `adam_beta2`: 0.999
|
382 |
+
- `adam_epsilon`: 1e-08
|
383 |
+
- `max_grad_norm`: 1.0
|
384 |
+
- `num_train_epochs`: 1
|
385 |
+
- `max_steps`: -1
|
386 |
+
- `lr_scheduler_type`: linear
|
387 |
+
- `lr_scheduler_kwargs`: {}
|
388 |
+
- `warmup_ratio`: 0.1
|
389 |
+
- `warmup_steps`: 0
|
390 |
+
- `log_level`: passive
|
391 |
+
- `log_level_replica`: warning
|
392 |
+
- `log_on_each_node`: True
|
393 |
+
- `logging_nan_inf_filter`: True
|
394 |
+
- `save_safetensors`: True
|
395 |
+
- `save_on_each_node`: False
|
396 |
+
- `save_only_model`: False
|
397 |
+
- `restore_callback_states_from_checkpoint`: False
|
398 |
+
- `no_cuda`: False
|
399 |
+
- `use_cpu`: False
|
400 |
+
- `use_mps_device`: False
|
401 |
+
- `seed`: 42
|
402 |
+
- `data_seed`: None
|
403 |
+
- `jit_mode_eval`: False
|
404 |
+
- `use_ipex`: False
|
405 |
+
- `bf16`: False
|
406 |
+
- `fp16`: True
|
407 |
+
- `fp16_opt_level`: O1
|
408 |
+
- `half_precision_backend`: auto
|
409 |
+
- `bf16_full_eval`: False
|
410 |
+
- `fp16_full_eval`: False
|
411 |
+
- `tf32`: None
|
412 |
+
- `local_rank`: 0
|
413 |
+
- `ddp_backend`: None
|
414 |
+
- `tpu_num_cores`: None
|
415 |
+
- `tpu_metrics_debug`: False
|
416 |
+
- `debug`: []
|
417 |
+
- `dataloader_drop_last`: False
|
418 |
+
- `dataloader_num_workers`: 0
|
419 |
+
- `dataloader_prefetch_factor`: None
|
420 |
+
- `past_index`: -1
|
421 |
+
- `disable_tqdm`: False
|
422 |
+
- `remove_unused_columns`: True
|
423 |
+
- `label_names`: None
|
424 |
+
- `load_best_model_at_end`: True
|
425 |
+
- `ignore_data_skip`: False
|
426 |
+
- `fsdp`: []
|
427 |
+
- `fsdp_min_num_params`: 0
|
428 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
429 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
430 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
431 |
+
- `deepspeed`: None
|
432 |
+
- `label_smoothing_factor`: 0.0
|
433 |
+
- `optim`: adamw_torch
|
434 |
+
- `optim_args`: None
|
435 |
+
- `adafactor`: False
|
436 |
+
- `group_by_length`: False
|
437 |
+
- `length_column_name`: length
|
438 |
+
- `ddp_find_unused_parameters`: None
|
439 |
+
- `ddp_bucket_cap_mb`: None
|
440 |
+
- `ddp_broadcast_buffers`: False
|
441 |
+
- `dataloader_pin_memory`: True
|
442 |
+
- `dataloader_persistent_workers`: False
|
443 |
+
- `skip_memory_metrics`: True
|
444 |
+
- `use_legacy_prediction_loop`: False
|
445 |
+
- `push_to_hub`: False
|
446 |
+
- `resume_from_checkpoint`: None
|
447 |
+
- `hub_model_id`: None
|
448 |
+
- `hub_strategy`: every_save
|
449 |
+
- `hub_private_repo`: False
|
450 |
+
- `hub_always_push`: False
|
451 |
+
- `gradient_checkpointing`: False
|
452 |
+
- `gradient_checkpointing_kwargs`: None
|
453 |
+
- `include_inputs_for_metrics`: False
|
454 |
+
- `eval_do_concat_batches`: True
|
455 |
+
- `fp16_backend`: auto
|
456 |
+
- `push_to_hub_model_id`: None
|
457 |
+
- `push_to_hub_organization`: None
|
458 |
+
- `mp_parameters`:
|
459 |
+
- `auto_find_batch_size`: False
|
460 |
+
- `full_determinism`: False
|
461 |
+
- `torchdynamo`: None
|
462 |
+
- `ray_scope`: last
|
463 |
+
- `ddp_timeout`: 1800
|
464 |
+
- `torch_compile`: False
|
465 |
+
- `torch_compile_backend`: None
|
466 |
+
- `torch_compile_mode`: None
|
467 |
+
- `dispatch_batches`: None
|
468 |
+
- `split_batches`: None
|
469 |
+
- `include_tokens_per_second`: False
|
470 |
+
- `include_num_input_tokens_seen`: False
|
471 |
+
- `neftune_noise_alpha`: None
|
472 |
+
- `optim_target_modules`: None
|
473 |
+
- `batch_eval_metrics`: False
|
474 |
+
- `eval_on_start`: False
|
475 |
+
- `eval_use_gather_object`: False
|
476 |
+
- `batch_sampler`: batch_sampler
|
477 |
+
- `multi_dataset_batch_sampler`: proportional
|
478 |
+
|
479 |
+
</details>
|
480 |
+
|
481 |
+
### Training Logs
|
482 |
+
<details><summary>Click to expand</summary>
|
483 |
+
|
484 |
+
| Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
485 |
+
|:----------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
|
486 |
+
| 0 | 0 | - | - | -0.2381 | 0.4206 | - |
|
487 |
+
| 0.0058 | 1000 | 0.0014 | - | - | - | - |
|
488 |
+
| 0.0117 | 2000 | 0.0009 | - | - | - | - |
|
489 |
+
| 0.0175 | 3000 | 0.0007 | - | - | - | - |
|
490 |
+
| 0.0233 | 4000 | 0.0006 | - | - | - | - |
|
491 |
+
| **0.0292** | **5000** | **0.0005** | **0.0004** | **-0.0363** | **0.6393** | **-** |
|
492 |
+
| 0.0350 | 6000 | 0.0004 | - | - | - | - |
|
493 |
+
| 0.0408 | 7000 | 0.0004 | - | - | - | - |
|
494 |
+
| 0.0467 | 8000 | 0.0003 | - | - | - | - |
|
495 |
+
| 0.0525 | 9000 | 0.0003 | - | - | - | - |
|
496 |
+
| 0.0583 | 10000 | 0.0003 | 0.0002 | -0.0207 | 0.6350 | - |
|
497 |
+
| 0.0641 | 11000 | 0.0003 | - | - | - | - |
|
498 |
+
| 0.0700 | 12000 | 0.0003 | - | - | - | - |
|
499 |
+
| 0.0758 | 13000 | 0.0002 | - | - | - | - |
|
500 |
+
| 0.0816 | 14000 | 0.0002 | - | - | - | - |
|
501 |
+
| 0.0875 | 15000 | 0.0002 | 0.0002 | -0.0157 | 0.6328 | - |
|
502 |
+
| 0.0933 | 16000 | 0.0002 | - | - | - | - |
|
503 |
+
| 0.0991 | 17000 | 0.0002 | - | - | - | - |
|
504 |
+
| 0.1050 | 18000 | 0.0002 | - | - | - | - |
|
505 |
+
| 0.1108 | 19000 | 0.0002 | - | - | - | - |
|
506 |
+
| 0.1166 | 20000 | 0.0002 | 0.0001 | -0.0132 | 0.6317 | - |
|
507 |
+
| 0.1225 | 21000 | 0.0002 | - | - | - | - |
|
508 |
+
| 0.1283 | 22000 | 0.0002 | - | - | - | - |
|
509 |
+
| 0.1341 | 23000 | 0.0002 | - | - | - | - |
|
510 |
+
| 0.1400 | 24000 | 0.0002 | - | - | - | - |
|
511 |
+
| 0.1458 | 25000 | 0.0002 | 0.0001 | -0.0118 | 0.6251 | - |
|
512 |
+
| 0.1516 | 26000 | 0.0002 | - | - | - | - |
|
513 |
+
| 0.1574 | 27000 | 0.0002 | - | - | - | - |
|
514 |
+
| 0.1633 | 28000 | 0.0002 | - | - | - | - |
|
515 |
+
| 0.1691 | 29000 | 0.0002 | - | - | - | - |
|
516 |
+
| 0.1749 | 30000 | 0.0002 | 0.0001 | -0.0109 | 0.6304 | - |
|
517 |
+
| 0.1808 | 31000 | 0.0002 | - | - | - | - |
|
518 |
+
| 0.1866 | 32000 | 0.0002 | - | - | - | - |
|
519 |
+
| 0.1924 | 33000 | 0.0002 | - | - | - | - |
|
520 |
+
| 0.1983 | 34000 | 0.0001 | - | - | - | - |
|
521 |
+
| 0.2041 | 35000 | 0.0001 | 0.0001 | -0.0102 | 0.6280 | - |
|
522 |
+
| 0.2099 | 36000 | 0.0001 | - | - | - | - |
|
523 |
+
| 0.2158 | 37000 | 0.0001 | - | - | - | - |
|
524 |
+
| 0.2216 | 38000 | 0.0001 | - | - | - | - |
|
525 |
+
| 0.2274 | 39000 | 0.0001 | - | - | - | - |
|
526 |
+
| 0.2333 | 40000 | 0.0001 | 0.0001 | -0.0098 | 0.6272 | - |
|
527 |
+
| 0.2391 | 41000 | 0.0001 | - | - | - | - |
|
528 |
+
| 0.2449 | 42000 | 0.0001 | - | - | - | - |
|
529 |
+
| 0.2507 | 43000 | 0.0001 | - | - | - | - |
|
530 |
+
| 0.2566 | 44000 | 0.0001 | - | - | - | - |
|
531 |
+
| 0.2624 | 45000 | 0.0001 | 0.0001 | -0.0093 | 0.6378 | - |
|
532 |
+
| 0.2682 | 46000 | 0.0001 | - | - | - | - |
|
533 |
+
| 0.2741 | 47000 | 0.0001 | - | - | - | - |
|
534 |
+
| 0.2799 | 48000 | 0.0001 | - | - | - | - |
|
535 |
+
| 0.2857 | 49000 | 0.0001 | - | - | - | - |
|
536 |
+
| 0.2916 | 50000 | 0.0001 | 0.0001 | -0.0089 | 0.6325 | - |
|
537 |
+
| 0.2974 | 51000 | 0.0001 | - | - | - | - |
|
538 |
+
| 0.3032 | 52000 | 0.0001 | - | - | - | - |
|
539 |
+
| 0.3091 | 53000 | 0.0001 | - | - | - | - |
|
540 |
+
| 0.3149 | 54000 | 0.0001 | - | - | - | - |
|
541 |
+
| 0.3207 | 55000 | 0.0001 | 0.0001 | -0.0087 | 0.6328 | - |
|
542 |
+
| 0.3266 | 56000 | 0.0001 | - | - | - | - |
|
543 |
+
| 0.3324 | 57000 | 0.0001 | - | - | - | - |
|
544 |
+
| 0.3382 | 58000 | 0.0001 | - | - | - | - |
|
545 |
+
| 0.3441 | 59000 | 0.0001 | - | - | - | - |
|
546 |
+
| 0.3499 | 60000 | 0.0001 | 0.0001 | -0.0085 | 0.6357 | - |
|
547 |
+
| 0.3557 | 61000 | 0.0001 | - | - | - | - |
|
548 |
+
| 0.3615 | 62000 | 0.0001 | - | - | - | - |
|
549 |
+
| 0.3674 | 63000 | 0.0001 | - | - | - | - |
|
550 |
+
| 0.3732 | 64000 | 0.0001 | - | - | - | - |
|
551 |
+
| 0.3790 | 65000 | 0.0001 | 0.0001 | -0.0083 | 0.6366 | - |
|
552 |
+
| 0.3849 | 66000 | 0.0001 | - | - | - | - |
|
553 |
+
| 0.3907 | 67000 | 0.0001 | - | - | - | - |
|
554 |
+
| 0.3965 | 68000 | 0.0001 | - | - | - | - |
|
555 |
+
| 0.4024 | 69000 | 0.0001 | - | - | - | - |
|
556 |
+
| 0.4082 | 70000 | 0.0001 | 0.0001 | -0.0080 | 0.6325 | - |
|
557 |
+
| 0.4140 | 71000 | 0.0001 | - | - | - | - |
|
558 |
+
| 0.4199 | 72000 | 0.0001 | - | - | - | - |
|
559 |
+
| 0.4257 | 73000 | 0.0001 | - | - | - | - |
|
560 |
+
| 0.4315 | 74000 | 0.0001 | - | - | - | - |
|
561 |
+
| 0.4374 | 75000 | 0.0001 | 0.0001 | -0.0078 | 0.6351 | - |
|
562 |
+
| 0.4432 | 76000 | 0.0001 | - | - | - | - |
|
563 |
+
| 0.4490 | 77000 | 0.0001 | - | - | - | - |
|
564 |
+
| 0.4548 | 78000 | 0.0001 | - | - | - | - |
|
565 |
+
| 0.4607 | 79000 | 0.0001 | - | - | - | - |
|
566 |
+
| 0.4665 | 80000 | 0.0001 | 0.0001 | -0.0077 | 0.6323 | - |
|
567 |
+
| 0.4723 | 81000 | 0.0001 | - | - | - | - |
|
568 |
+
| 0.4782 | 82000 | 0.0001 | - | - | - | - |
|
569 |
+
| 0.4840 | 83000 | 0.0001 | - | - | - | - |
|
570 |
+
| 0.4898 | 84000 | 0.0001 | - | - | - | - |
|
571 |
+
| 0.4957 | 85000 | 0.0001 | 0.0001 | -0.0076 | 0.6316 | - |
|
572 |
+
| 0.5015 | 86000 | 0.0001 | - | - | - | - |
|
573 |
+
| 0.5073 | 87000 | 0.0001 | - | - | - | - |
|
574 |
+
| 0.5132 | 88000 | 0.0001 | - | - | - | - |
|
575 |
+
| 0.5190 | 89000 | 0.0001 | - | - | - | - |
|
576 |
+
| 0.5248 | 90000 | 0.0001 | 0.0001 | -0.0074 | 0.6306 | - |
|
577 |
+
| 0.5307 | 91000 | 0.0001 | - | - | - | - |
|
578 |
+
| 0.5365 | 92000 | 0.0001 | - | - | - | - |
|
579 |
+
| 0.5423 | 93000 | 0.0001 | - | - | - | - |
|
580 |
+
| 0.5481 | 94000 | 0.0001 | - | - | - | - |
|
581 |
+
| 0.5540 | 95000 | 0.0001 | 0.0001 | -0.0073 | 0.6305 | - |
|
582 |
+
| 0.5598 | 96000 | 0.0001 | - | - | - | - |
|
583 |
+
| 0.5656 | 97000 | 0.0001 | - | - | - | - |
|
584 |
+
| 0.5715 | 98000 | 0.0001 | - | - | - | - |
|
585 |
+
| 0.5773 | 99000 | 0.0001 | - | - | - | - |
|
586 |
+
| 0.5831 | 100000 | 0.0001 | 0.0001 | -0.0072 | 0.6333 | - |
|
587 |
+
| 0.5890 | 101000 | 0.0001 | - | - | - | - |
|
588 |
+
| 0.5948 | 102000 | 0.0001 | - | - | - | - |
|
589 |
+
| 0.6006 | 103000 | 0.0001 | - | - | - | - |
|
590 |
+
| 0.6065 | 104000 | 0.0001 | - | - | - | - |
|
591 |
+
| 0.6123 | 105000 | 0.0001 | 0.0001 | -0.0071 | 0.6351 | - |
|
592 |
+
| 0.6181 | 106000 | 0.0001 | - | - | - | - |
|
593 |
+
| 0.6240 | 107000 | 0.0001 | - | - | - | - |
|
594 |
+
| 0.6298 | 108000 | 0.0001 | - | - | - | - |
|
595 |
+
| 0.6356 | 109000 | 0.0001 | - | - | - | - |
|
596 |
+
| 0.6415 | 110000 | 0.0001 | 0.0001 | -0.0070 | 0.6330 | - |
|
597 |
+
| 0.6473 | 111000 | 0.0001 | - | - | - | - |
|
598 |
+
| 0.6531 | 112000 | 0.0001 | - | - | - | - |
|
599 |
+
| 0.6589 | 113000 | 0.0001 | - | - | - | - |
|
600 |
+
| 0.6648 | 114000 | 0.0001 | - | - | - | - |
|
601 |
+
| 0.6706 | 115000 | 0.0001 | 0.0001 | -0.0070 | 0.6336 | - |
|
602 |
+
| 0.6764 | 116000 | 0.0001 | - | - | - | - |
|
603 |
+
| 0.6823 | 117000 | 0.0001 | - | - | - | - |
|
604 |
+
| 0.6881 | 118000 | 0.0001 | - | - | - | - |
|
605 |
+
| 0.6939 | 119000 | 0.0001 | - | - | - | - |
|
606 |
+
| 0.6998 | 120000 | 0.0001 | 0.0001 | -0.0069 | 0.6305 | - |
|
607 |
+
| 0.7056 | 121000 | 0.0001 | - | - | - | - |
|
608 |
+
| 0.7114 | 122000 | 0.0001 | - | - | - | - |
|
609 |
+
| 0.7173 | 123000 | 0.0001 | - | - | - | - |
|
610 |
+
| 0.7231 | 124000 | 0.0001 | - | - | - | - |
|
611 |
+
| 0.7289 | 125000 | 0.0001 | 0.0001 | -0.0068 | 0.6362 | - |
|
612 |
+
| 0.7348 | 126000 | 0.0001 | - | - | - | - |
|
613 |
+
| 0.7406 | 127000 | 0.0001 | - | - | - | - |
|
614 |
+
| 0.7464 | 128000 | 0.0001 | - | - | - | - |
|
615 |
+
| 0.7522 | 129000 | 0.0001 | - | - | - | - |
|
616 |
+
| 0.7581 | 130000 | 0.0001 | 0.0001 | -0.0067 | 0.6340 | - |
|
617 |
+
| 0.7639 | 131000 | 0.0001 | - | - | - | - |
|
618 |
+
| 0.7697 | 132000 | 0.0001 | - | - | - | - |
|
619 |
+
| 0.7756 | 133000 | 0.0001 | - | - | - | - |
|
620 |
+
| 0.7814 | 134000 | 0.0001 | - | - | - | - |
|
621 |
+
| 0.7872 | 135000 | 0.0001 | 0.0001 | -0.0067 | 0.6365 | - |
|
622 |
+
| 0.7931 | 136000 | 0.0001 | - | - | - | - |
|
623 |
+
| 0.7989 | 137000 | 0.0001 | - | - | - | - |
|
624 |
+
| 0.8047 | 138000 | 0.0001 | - | - | - | - |
|
625 |
+
| 0.8106 | 139000 | 0.0001 | - | - | - | - |
|
626 |
+
| 0.8164 | 140000 | 0.0001 | 0.0001 | -0.0066 | 0.6339 | - |
|
627 |
+
| 0.8222 | 141000 | 0.0001 | - | - | - | - |
|
628 |
+
| 0.8281 | 142000 | 0.0001 | - | - | - | - |
|
629 |
+
| 0.8339 | 143000 | 0.0001 | - | - | - | - |
|
630 |
+
| 0.8397 | 144000 | 0.0001 | - | - | - | - |
|
631 |
+
| 0.8456 | 145000 | 0.0001 | 0.0001 | -0.0066 | 0.6352 | - |
|
632 |
+
| 0.8514 | 146000 | 0.0001 | - | - | - | - |
|
633 |
+
| 0.8572 | 147000 | 0.0001 | - | - | - | - |
|
634 |
+
| 0.8630 | 148000 | 0.0001 | - | - | - | - |
|
635 |
+
| 0.8689 | 149000 | 0.0001 | - | - | - | - |
|
636 |
+
| 0.8747 | 150000 | 0.0001 | 0.0001 | -0.0065 | 0.6357 | - |
|
637 |
+
| 0.8805 | 151000 | 0.0001 | - | - | - | - |
|
638 |
+
| 0.8864 | 152000 | 0.0001 | - | - | - | - |
|
639 |
+
| 0.8922 | 153000 | 0.0001 | - | - | - | - |
|
640 |
+
| 0.8980 | 154000 | 0.0001 | - | - | - | - |
|
641 |
+
| 0.9039 | 155000 | 0.0001 | 0.0001 | -0.0065 | 0.6336 | - |
|
642 |
+
| 0.9097 | 156000 | 0.0001 | - | - | - | - |
|
643 |
+
| 0.9155 | 157000 | 0.0001 | - | - | - | - |
|
644 |
+
| 0.9214 | 158000 | 0.0001 | - | - | - | - |
|
645 |
+
| 0.9272 | 159000 | 0.0001 | - | - | - | - |
|
646 |
+
| 0.9330 | 160000 | 0.0001 | 0.0001 | -0.0064 | 0.6334 | - |
|
647 |
+
| 0.9389 | 161000 | 0.0001 | - | - | - | - |
|
648 |
+
| 0.9447 | 162000 | 0.0001 | - | - | - | - |
|
649 |
+
| 0.9505 | 163000 | 0.0001 | - | - | - | - |
|
650 |
+
| 0.9563 | 164000 | 0.0001 | - | - | - | - |
|
651 |
+
| 0.9622 | 165000 | 0.0001 | 0.0001 | -0.0064 | 0.6337 | - |
|
652 |
+
| 0.9680 | 166000 | 0.0001 | - | - | - | - |
|
653 |
+
| 0.9738 | 167000 | 0.0001 | - | - | - | - |
|
654 |
+
| 0.9797 | 168000 | 0.0001 | - | - | - | - |
|
655 |
+
| 0.9855 | 169000 | 0.0001 | - | - | - | - |
|
656 |
+
| 0.9913 | 170000 | 0.0001 | 0.0001 | -0.0063 | 0.6347 | - |
|
657 |
+
| 0.9972 | 171000 | 0.0001 | - | - | - | - |
|
658 |
+
| 1.0 | 171486 | - | - | - | - | 0.5986 |
|
659 |
+
|
660 |
+
* The bold row denotes the saved checkpoint.
|
661 |
+
</details>
|
662 |
+
|
663 |
+
### Framework Versions
|
664 |
+
- Python: 3.10.14
|
665 |
+
- Sentence Transformers: 3.0.1
|
666 |
+
- Transformers: 4.44.0
|
667 |
+
- PyTorch: 2.4.0
|
668 |
+
- Accelerate: 0.33.0
|
669 |
+
- Datasets: 2.20.0
|
670 |
+
- Tokenizers: 0.19.1
|
671 |
+
|
672 |
+
## Citation
|
673 |
+
|
674 |
+
### BibTeX
|
675 |
+
|
676 |
+
#### Sentence Transformers
|
677 |
+
```bibtex
|
678 |
+
@inproceedings{reimers-2019-sentence-bert,
|
679 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
680 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
681 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
682 |
+
month = "11",
|
683 |
+
year = "2019",
|
684 |
+
publisher = "Association for Computational Linguistics",
|
685 |
+
url = "https://arxiv.org/abs/1908.10084",
|
686 |
+
}
|
687 |
+
```
|
688 |
+
|
689 |
+
#### MSELoss
|
690 |
+
```bibtex
|
691 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
692 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
693 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
694 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
695 |
+
month = "11",
|
696 |
+
year = "2020",
|
697 |
+
publisher = "Association for Computational Linguistics",
|
698 |
+
url = "https://arxiv.org/abs/2004.09813",
|
699 |
+
}
|
700 |
+
```
|
701 |
+
|
702 |
+
<!--
|
703 |
+
## Glossary
|
704 |
+
|
705 |
+
*Clearly define terms in order to be accessible across audiences.*
|
706 |
+
-->
|
707 |
+
|
708 |
+
<!--
|
709 |
+
## Model Card Authors
|
710 |
+
|
711 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
712 |
+
-->
|
713 |
+
|
714 |
+
<!--
|
715 |
+
## Model Card Contact
|
716 |
+
|
717 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
718 |
-->
|