File size: 9,847 Bytes
dd4577b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 13 16:13:29 2024
This script generates preprocessed data from wireless communication scenarios,
including token generation, patch creation, and data sampling for machine learning models.
@author: salikha4
"""
import numpy as np
import os
from tqdm import tqdm
import time
import pickle
import DeepMIMOv3
vars_folder = 'variables/'
os.makedirs(vars_folder, exist_ok=True)
#%% Scenarios List
def scenarios_list():
"""Returns an array of available scenarios."""
return np.array([
'city_18_denver', 'city_15_indianapolis', 'city_19_oklahoma',
'city_12_fortworth', 'city_11_santaclara', 'city_7_sandiego'
])
#%% Token Generation
def tokenizer(deepmimo_data, gen_raw=True):
"""
Generates tokens by preparing and preprocessing the dataset.
Args:
scenario_idxs (list): Indices of the scenarios.
patch_gen (bool): Whether to generate patches. Defaults to True.
patch_size (int): Size of each patch. Defaults to 16.
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data. Defaults to False.
gen_raw (bool): Whether to generate raw data. Defaults to False.
save_data (bool): Whether to save the preprocessed data. Defaults to False.
Returns:
preprocessed_data, sequence_length, element_length: Preprocessed data and related dimensions.
"""
# Patch generation or loading
n_scenarios = len(deepmimo_data)
patches = [patch_maker(deepmimo_data[scenario_idx]) for scenario_idx in range(n_scenarios)]
patches = np.vstack(patches)
# Define dimensions
patch_size = patches.shape[2]
n_patches = patches.shape[1]
n_masks_half = int(0.15 * n_patches / 2)
sequence_length = n_patches + 1
element_length = patch_size
word2id = {'[CLS]': 0.2 * np.ones((patch_size)), '[MASK]': 0.1 * np.ones((patch_size))}
# Generate preprocessed channels
preprocessed_data = []
for user_idx in tqdm(range(len(patches)), desc="Processing items"):
sample = make_sample(user_idx, patches, word2id, n_patches, n_masks_half, patch_size, gen_raw=gen_raw)
preprocessed_data.append(sample)
return preprocessed_data
#%% Patch Creation
def patch_maker(data, patch_size=16, norm_factor=1e6):
"""
Creates patches from the dataset based on the scenario.
Args:-
patch_size (int): Size of each patch.
scenario (str): Selected scenario for data generation.
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
norm_factor (int): Normalization factor for channels.
Returns:
patch (numpy array): Generated patches.
"""
idxs = np.where(data['user']['LoS'] != -1)[0]
# Reshaping and normalizing channels
original_ch = data['user']['channel'][idxs]
flat_channels = original_ch.reshape((original_ch.shape[0], -1)).astype(np.csingle)
flat_channels_complex = np.hstack((flat_channels.real, flat_channels.imag)) * norm_factor
# Create patches
n_patches = flat_channels_complex.shape[1] // patch_size
patch = np.zeros((len(idxs), n_patches, patch_size))
for idx in range(n_patches):
patch[:, idx, :] = flat_channels_complex[:, idx * patch_size:(idx + 1) * patch_size]
return patch
#%% Data Generation for Scenario Areas
def DeepMIMO_data_gen(scenario):
"""
Generates or loads data for a given scenario.
Args:
scenario (str): Scenario name.
gen_deepMIMO_data (bool): Whether to generate DeepMIMO data.
save_data (bool): Whether to save generated data.
Returns:
data (dict): Loaded or generated data.
"""
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
deepMIMO_dataset = DeepMIMOv3.generate_data(parameters)
uniform_idxs = uniform_sampling(deepMIMO_dataset, [1, 1], len(parameters['user_rows']),
users_per_row=row_column_users[scenario]['n_per_row'])
data = select_by_idx(deepMIMO_dataset, uniform_idxs)[0]
return data
#%%%
def get_parameters(scenario):
n_ant_bs = 32 #32
n_ant_ue = 1
n_subcarriers = 32 #32
scs = 30e3
row_column_users = {
'city_18_denver': {
'n_rows': 85,
'n_per_row': 82
},
'city_15_indianapolis': {
'n_rows': 80,
'n_per_row': 79
},
'city_19_oklahoma': {
'n_rows': 82,
'n_per_row': 75
},
'city_12_fortworth': {
'n_rows': 86,
'n_per_row': 72
},
'city_11_santaclara': {
'n_rows': 47,
'n_per_row': 114
},
'city_7_sandiego': {
'n_rows': 71,
'n_per_row': 83
}}
parameters = DeepMIMOv3.default_params()
parameters['dataset_folder'] = './scenarios'
parameters['scenario'] = scenario
if scenario == 'O1_3p5':
parameters['active_BS'] = np.array([4])
elif scenario in ['city_18_denver', 'city_15_indianapolis']:
parameters['active_BS'] = np.array([3])
else:
parameters['active_BS'] = np.array([1])
if scenario == 'Boston5G_3p5':
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'][0],
row_column_users[scenario]['n_rows'][1])
else:
parameters['user_rows'] = np.arange(row_column_users[scenario]['n_rows'])
parameters['bs_antenna']['shape'] = np.array([n_ant_bs, 1]) # Horizontal, Vertical
parameters['bs_antenna']['rotation'] = np.array([0,0,-135]) # (x,y,z)
parameters['ue_antenna']['shape'] = np.array([n_ant_ue, 1])
parameters['enable_BS2BS'] = False
parameters['OFDM']['subcarriers'] = n_subcarriers
parameters['OFDM']['selected_subcarriers'] = np.arange(n_subcarriers)
parameters['OFDM']['bandwidth'] = scs * n_subcarriers / 1e9
parameters['num_paths'] = 20
return parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers
#%% Sample Generation
def make_sample(user_idx, patch, word2id, n_patches, n_masks, patch_size, gen_raw=False):
"""
Generates a sample for each user, including masking and tokenizing.
Args:
user_idx (int): Index of the user.
patch (numpy array): Patches data.
word2id (dict): Dictionary for special tokens.
n_patches (int): Number of patches.
n_masks (int): Number of masks.
patch_size (int): Size of each patch.
gen_raw (bool): Whether to generate raw tokens.
Returns:
sample (list): Generated sample for the user.
"""
tokens = patch[user_idx]
input_ids = np.vstack((word2id['[CLS]'], tokens))
real_tokens_size = int(n_patches / 2)
masks_pos_real = np.random.choice(range(0, real_tokens_size), size=n_masks, replace=False)
masks_pos_imag = masks_pos_real + real_tokens_size
masked_pos = np.hstack((masks_pos_real, masks_pos_imag)) + 1
masked_tokens = []
for pos in masked_pos:
original_masked_tokens = input_ids[pos].copy()
masked_tokens.append(original_masked_tokens)
if not gen_raw:
rnd_num = np.random.rand()
if rnd_num < 0.1:
input_ids[pos] = np.random.rand(patch_size)
elif rnd_num < 0.9:
input_ids[pos] = word2id['[MASK]']
return [input_ids, masked_tokens, masked_pos]
#%% Sampling and Data Selection
def uniform_sampling(dataset, sampling_div, n_rows, users_per_row):
"""
Performs uniform sampling on the dataset.
Args:
dataset (dict): DeepMIMO dataset.
sampling_div (list): Step sizes along [x, y] dimensions.
n_rows (int): Number of rows for user selection.
users_per_row (int): Number of users per row.
Returns:
uniform_idxs (numpy array): Indices of the selected samples.
"""
cols = np.arange(users_per_row, step=sampling_div[0])
rows = np.arange(n_rows, step=sampling_div[1])
uniform_idxs = np.array([j + i * users_per_row for i in rows for j in cols])
return uniform_idxs
def select_by_idx(dataset, idxs):
"""
Selects a subset of the dataset based on the provided indices.
Args:
dataset (dict): Dataset to trim.
idxs (numpy array): Indices of users to select.
Returns:
dataset_t (list): Trimmed dataset based on selected indices.
"""
dataset_t = [] # Trimmed dataset
for bs_idx in range(len(dataset)):
dataset_t.append({})
for key in dataset[bs_idx].keys():
dataset_t[bs_idx]['location'] = dataset[bs_idx]['location']
dataset_t[bs_idx]['user'] = {k: dataset[bs_idx]['user'][k][idxs] for k in dataset[bs_idx]['user']}
return dataset_t
#%% Save and Load Utilities
def save_var(var, path):
"""
Saves a variable to a pickle file.
Args:
var (object): Variable to be saved.
path (str): Path to save the file.
Returns:
None
"""
path_full = path if path.endswith('.p') else (path + '.pickle')
with open(path_full, 'wb') as handle:
pickle.dump(var, handle)
def load_var(path):
"""
Loads a variable from a pickle file.
Args:
path (str): Path of the file to load.
Returns:
var (object): Loaded variable.
"""
path_full = path if path.endswith('.p') else (path + '.pickle')
with open(path_full, 'rb') as handle:
var = pickle.load(handle)
return var
#%% |