File size: 6,039 Bytes
dd4577b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
"""
LWM (Large Wireless Model) Implementation and Loading
@author: salikha4
This module defines a Large Wireless Model (LWM) using PyTorch, including custom layers
for embedding, self-attention, and feed-forward networks. It also provides functionality
to load a pre-trained model from a checkpoint.
Dependencies:
- torch
- numpy
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
ELEMENT_LENGTH = 16
D_MODEL = 64
MAX_LEN = 129
N_LAYERS = 12
N_HEADS = 12
D_FF = D_MODEL * 4
D_K = D_MODEL // N_HEADS
D_V = D_MODEL // N_HEADS
DROPOUT = 0.1
class LayerNormalization(nn.Module):
def __init__(self, d_model: int, eps: float = 1e-6) -> None:
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(d_model))
self.bias = nn.Parameter(torch.zeros(d_model))
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
std = x.std(dim=-1, keepdim=True)
return self.alpha * (x - mean) / (std + self.eps) + self.bias
class Embedding(nn.Module):
def __init__(self, element_length, d_model, max_len):
super().__init__()
self.element_length = element_length
self.d_model = d_model
self.proj = nn.Linear(element_length, d_model)
self.pos_embed = nn.Embedding(max_len, d_model)
self.norm = LayerNormalization(d_model)
def forward(self, x):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
tok_emb = self.proj(x.float())
embedding = tok_emb + self.pos_embed(pos)
return self.norm(embedding)
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super().__init__()
def forward(self, Q, K, V):
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
attn = F.softmax(scores, dim=-1)
context = torch.matmul(attn, V)
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self):
super().__init__()
self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
self.norm = LayerNormalization(D_MODEL)
self.dropout = nn.Dropout(DROPOUT)
def forward(self, Q, K, V):
residual, batch_size = Q, Q.size(0)
q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
output = self.linear(output)
return residual + self.dropout(output), attn #residual + self.dropout(output), attn
class PoswiseFeedForwardNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(D_MODEL, D_FF)
self.fc2 = nn.Linear(D_FF, D_MODEL)
self.dropout = nn.Dropout(DROPOUT)
self.norm = LayerNormalization(D_MODEL)
def forward(self, x):
output = self.fc2(self.dropout(F.relu(self.fc1(x))))
return x + self.dropout(output) #x + self.dropout(output)
class EncoderLayer(nn.Module):
def __init__(self):
super().__init__()
self.enc_self_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
self.norm = LayerNormalization(D_MODEL)
def forward(self, enc_inputs):
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
attn_outputs = self.norm(attn_outputs)
enc_outputs = self.pos_ffn(attn_outputs)
return enc_outputs, attn
class LWM(nn.Module):
def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
super().__init__()
self.embedding = Embedding(element_length, d_model, max_len)
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
self.linear = nn.Linear(d_model, d_model)
self.norm = LayerNormalization(d_model)
embed_weight = self.embedding.proj.weight
d_model, n_dim = embed_weight.size()
self.decoder = nn.Linear(d_model, n_dim, bias=False)
self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
def forward(self, input_ids, masked_pos):
output = self.embedding(input_ids)
for layer in self.layers:
output, _ = layer(output)
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
h_masked = torch.gather(output, 1, masked_pos)
h_masked = self.norm(F.relu(self.linear(h_masked)))
logits_lm = self.decoder(h_masked) + self.decoder_bias
return logits_lm, output
def load_model(model, model_path, device=None):
"""
Load a pre-trained LWM model from a checkpoint.
Args:
model_path (str): Path to the checkpoint file.
device (torch.device, optional): Device to load the model onto.
Returns:
LWM: Loaded model instance.
"""
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#model = LWM(ELEMENT_LENGTH, D_MODEL, MAX_LEN, N_LAYERS)
state_dict = torch.load(model_path, map_location=device)
model.load_state_dict(state_dict)
model.to(device)
return model
# Usage example
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = 'model_weights.pth'
model_path = f'models/{model_name}'
model = LWM()
model = load_model(model, model_path, device)
print(f"Model loaded successfully on {device}")
print(f"Model parameters: {sum(p.numel() for p in model.parameters())}") |