File size: 6,039 Bytes
dd4577b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""
LWM (Large Wireless Model) Implementation and Loading

@author: salikha4

This module defines a Large Wireless Model (LWM) using PyTorch, including custom layers
for embedding, self-attention, and feed-forward networks. It also provides functionality
to load a pre-trained model from a checkpoint.

Dependencies:
    - torch
    - numpy
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

ELEMENT_LENGTH = 16
D_MODEL = 64
MAX_LEN = 129
N_LAYERS = 12
N_HEADS = 12
D_FF = D_MODEL * 4
D_K = D_MODEL // N_HEADS
D_V = D_MODEL // N_HEADS
DROPOUT = 0.1

class LayerNormalization(nn.Module):
    def __init__(self, d_model: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.eps = eps
        self.alpha = nn.Parameter(torch.ones(d_model))
        self.bias = nn.Parameter(torch.zeros(d_model))

    def forward(self, x):
        mean = x.mean(dim=-1, keepdim=True)
        std = x.std(dim=-1, keepdim=True)
        return self.alpha * (x - mean) / (std + self.eps) + self.bias

class Embedding(nn.Module):
    def __init__(self, element_length, d_model, max_len):
        super().__init__()
        self.element_length = element_length
        self.d_model = d_model
        self.proj = nn.Linear(element_length, d_model)
        self.pos_embed = nn.Embedding(max_len, d_model)
        self.norm = LayerNormalization(d_model)

    def forward(self, x):
        seq_len = x.size(1)
        pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
        pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
        tok_emb = self.proj(x.float())
        embedding = tok_emb + self.pos_embed(pos)
        return self.norm(embedding)

class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, Q, K, V):
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
        attn = F.softmax(scores, dim=-1)
        context = torch.matmul(attn, V)
        return context, attn

class MultiHeadAttention(nn.Module):
    def __init__(self):
        super().__init__()
        self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
        self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
        self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
        self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
        self.norm = LayerNormalization(D_MODEL)
        self.dropout = nn.Dropout(DROPOUT)
        
    def forward(self, Q, K, V):
        residual, batch_size = Q, Q.size(0)
        q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
        k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
        v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)

        context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
        output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
        output = self.linear(output)
        return residual + self.dropout(output), attn #residual + self.dropout(output), attn

class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(D_MODEL, D_FF)
        self.fc2 = nn.Linear(D_FF, D_MODEL)
        self.dropout = nn.Dropout(DROPOUT)
        self.norm = LayerNormalization(D_MODEL)

    def forward(self, x):
        output = self.fc2(self.dropout(F.relu(self.fc1(x))))
        return x + self.dropout(output) #x + self.dropout(output)

class EncoderLayer(nn.Module):
    def __init__(self):
        super().__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()
        self.norm = LayerNormalization(D_MODEL)

    def forward(self, enc_inputs):
        attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
        attn_outputs = self.norm(attn_outputs)
        enc_outputs = self.pos_ffn(attn_outputs)
        return enc_outputs, attn

class LWM(nn.Module):
    def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
        super().__init__()

        self.embedding = Embedding(element_length, d_model, max_len)
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
        self.linear = nn.Linear(d_model, d_model)
        self.norm = LayerNormalization(d_model)

        embed_weight = self.embedding.proj.weight
        d_model, n_dim = embed_weight.size()
        self.decoder = nn.Linear(d_model, n_dim, bias=False)
        self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
        self.decoder_bias = nn.Parameter(torch.zeros(n_dim))

    def forward(self, input_ids, masked_pos):
        output = self.embedding(input_ids)
        
        for layer in self.layers:
            output, _ = layer(output)

        masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
        h_masked = torch.gather(output, 1, masked_pos)
        h_masked = self.norm(F.relu(self.linear(h_masked)))
        logits_lm = self.decoder(h_masked) + self.decoder_bias

        return logits_lm, output

def load_model(model, model_path, device=None):
    """
    Load a pre-trained LWM model from a checkpoint.

    Args:
        model_path (str): Path to the checkpoint file.
        device (torch.device, optional): Device to load the model onto.

    Returns:
        LWM: Loaded model instance.
    """
    if device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    #model = LWM(ELEMENT_LENGTH, D_MODEL, MAX_LEN, N_LAYERS)
    state_dict = torch.load(model_path, map_location=device)
    model.load_state_dict(state_dict)
    model.to(device)
    return model

# Usage example
if __name__ == "__main__":
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model_name = 'model_weights.pth'
    model_path = f'models/{model_name}'

    model = LWM()
    
    model = load_model(model, model_path, device)
    print(f"Model loaded successfully on {device}")
    print(f"Model parameters: {sum(p.numel() for p in model.parameters())}")