File size: 7,580 Bytes
6647b6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 15 19:55:23 2024
@author: salikha4
"""
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from inference import *
from load_data import load_DeepMIMO_data
from input_preprocess import *
from lwm_model import LWM, load_model
ELEMENT_LENGTH = 16
D_MODEL = 64
MAX_LEN = 129
N_LAYERS = 12
N_HEADS = 12
D_FF = D_MODEL * 4
D_K = D_MODEL // N_HEADS
D_V = D_MODEL // N_HEADS
DROPOUT = 0.1
class LayerNormalization(nn.Module):
def __init__(self, d_model: int, eps: float = 1e-6) -> None:
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(d_model))
self.bias = nn.Parameter(torch.zeros(d_model))
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
std = x.std(dim=-1, keepdim=True)
return self.alpha * (x - mean) / (std + self.eps) + self.bias
class Embedding(nn.Module):
def __init__(self, element_length, d_model, max_len):
super().__init__()
self.element_length = element_length
self.d_model = d_model
self.proj = nn.Linear(element_length, d_model)
self.pos_embed = nn.Embedding(max_len, d_model)
self.norm = LayerNormalization(d_model)
def forward(self, x):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
tok_emb = self.proj(x.float())
embedding = tok_emb + self.pos_embed(pos)
return self.norm(embedding)
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super().__init__()
def forward(self, Q, K, V):
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
attn = F.softmax(scores, dim=-1)
context = torch.matmul(attn, V)
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self):
super().__init__()
self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
self.norm = LayerNormalization(D_MODEL)
self.dropout = nn.Dropout(DROPOUT)
def forward(self, Q, K, V):
residual, batch_size = Q, Q.size(0)
q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
output = self.linear(output)
return residual + self.dropout(output), attn #residual + self.dropout(output), attn
class PoswiseFeedForwardNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(D_MODEL, D_FF)
self.fc2 = nn.Linear(D_FF, D_MODEL)
self.dropout = nn.Dropout(DROPOUT)
self.norm = LayerNormalization(D_MODEL)
def forward(self, x):
output = self.fc2(self.dropout(F.relu(self.fc1(x))))
return x + self.dropout(output) #x + self.dropout(output)
class EncoderLayer(nn.Module):
def __init__(self):
super().__init__()
self.enc_self_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
self.norm = LayerNormalization(D_MODEL)
def forward(self, enc_inputs):
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
attn_outputs = self.norm(attn_outputs)
enc_outputs = self.pos_ffn(attn_outputs)
return enc_outputs, attn
# class LWM(torch.nn.Module):
# def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
# super().__init__()
# self.embedding = Embedding(element_length, d_model, max_len)
# self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
# self.linear = nn.Linear(d_model, d_model)
# self.norm = LayerNormalization(d_model)
# embed_weight = self.embedding.proj.weight
# d_model, n_dim = embed_weight.size()
# self.decoder = nn.Linear(d_model, n_dim, bias=False)
# self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
# self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
# @classmethod
# def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda'):
# # Define model
# model = cls().to(device)
# # Download the model weights (from a remote or local repository)
# ckpt_path = f'https://huggingface.co/sadjadalikhani/LWM/resolve/main/{ckpt_name}'
# # Load the model weights
# model.load_state_dict(torch.hub.load_state_dict_from_url(ckpt_path, map_location=device))
# print(f"Model loaded successfully from {ckpt_path} to {device}")
# return model
# def forward(self, input_ids, masked_pos):
# output = self.embedding(input_ids)
# for layer in self.layers:
# output, _ = layer(output)
# masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
# h_masked = torch.gather(output, 1, masked_pos)
# h_masked = self.norm(F.relu(self.linear(h_masked)))
# logits_lm = self.decoder(h_masked) + self.decoder_bias
# return logits_lm, output
from huggingface_hub import hf_hub_download
import torch
class LWM(torch.nn.Module):
def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
super().__init__()
# Model architecture...
self.embedding = Embedding(element_length, d_model, max_len)
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
self.linear = nn.Linear(d_model, d_model)
self.norm = LayerNormalization(d_model)
embed_weight = self.embedding.proj.weight
d_model, n_dim = embed_weight.size()
self.decoder = nn.Linear(d_model, n_dim, bias=False)
self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
@classmethod
def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda', use_auth_token=None):
# Define model
model = cls().to(device)
# Download model weights using Hugging Face Hub
ckpt_path = hf_hub_download(repo_id="sadjadalikhani/LWM", filename=ckpt_name, use_auth_token=use_auth_token)
# Load the model weights
model.load_state_dict(torch.load(ckpt_path, map_location=device))
print(f"Model loaded successfully from {ckpt_path} to {device}")
return model
def forward(self, input_ids, masked_pos):
# Define the forward pass
output = self.embedding(input_ids)
for layer in self.layers:
output, _ = layer(output)
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
h_masked = torch.gather(output, 1, masked_pos)
h_masked = self.norm(F.relu(self.linear(h_masked)))
logits_lm = self.decoder(h_masked) + self.decoder_bias
return logits_lm, output
|