File size: 4,590 Bytes
cd7cb8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# LWM: Large Wireless Model
This repository contains the implementation of **LWM** (Large Wireless Model), a pre-trained model for processing and extracting features from wireless communication datasets, specifically DeepMIMO. The instructions below will help you load DeepMIMO data, use the LWM model and weights, tokenize DeepMIMO scenario data, and generate either raw channels or the inferred LWM CLS or channel embeddings.
## How to Use
### Step-by-Step Guide
1. **Clone the Repository**
Clone the Hugging Face repository to your local machine using the following code:
```python
import subprocess
import os
import sys
import importlib.util
import torch
# Hugging Face public repository URL
repo_url = "https://huggingface.co/sadjadalikhani/LWM"
# Directory where the repo will be cloned
clone_dir = "./LWM"
# Step 1: Clone the repository if it hasn't been cloned already
if not os.path.exists(clone_dir):
print(f"Cloning repository from {repo_url} into {clone_dir}...")
result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)
if result.returncode != 0:
print(f"Error cloning repository: {result.stderr}")
sys.exit(1) # Exit on failure
print(f"Repository cloned successfully into {clone_dir}")
else:
print(f"Repository already cloned into {clone_dir}")
# Step 2: Add the cloned directory to Python path
sys.path.append(clone_dir)
# Step 3: Dynamic module import and function exposure
def import_functions_from_file(module_name, file_path):
try:
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Extract functions from the module and make them globally accessible
for function_name in dir(module):
if callable(getattr(module, function_name)) and not function_name.startswith("__"):
globals()[function_name] = getattr(module, function_name)
return module
except FileNotFoundError:
print(f"Error: {file_path} not found!")
sys.exit(1)
# Step 4: Import necessary functions
import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
print("All required functions imported successfully.")
```
2. **Load the LWM Model**
After cloning the repository, you can load the LWM model with the following code:
```python
# Step 5: Load the LWM model (with flexibility for the device)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = LWM.from_pretrained(device=device)
```
3. **Load the DeepMIMO Dataset**
Load the DeepMIMO dataset with this code:
```python
# Step 6: Load dataset (direct call, no module prefix)
print("Loading DeepMIMO dataset...")
deepmimo_data = load_DeepMIMO_data()
```
4. **Tokenize the DeepMIMO Dataset**
Tokenize the loaded dataset. You can choose the scenario indices to select specific scenarios from DeepMIMO:
```python
# Step 7: Tokenize the dataset (direct call, no module prefix)
scenario_idxs = torch.arange(1) # Adjust the number of scenarios you want
print("Tokenizing the dataset...")
preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
```
5. **Generate the Dataset for Inference**
Choose the type of data you want to generate from the tokenized dataset, such as `cls_emb`, `channel_emb`, or `raw`:
```python
# Step 8: Generate the dataset for inference (direct call, no module prefix)
input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
dataset = dataset_gen(preprocessed_chs, input_type, model)
```
6. **Print Results**
Finally, you can print the results and check the shape of the generated dataset:
```python
# Step 9: Print results
print(f"Dataset generated with shape: {dataset.shape}")
print("Inference completed successfully.")
```
---
### Requirements
- Python 3.x
- PyTorch
- Git
Ensure you have the necessary libraries installed before running the script.
|