File size: 5,340 Bytes
1484210 7d37a39 1484210 6920787 1484210 dd4577b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 15 18:27:17 2024
@author: salikha4
"""
import os
import csv
import json
import shutil
import random
import argparse
from datetime import datetime
import pandas as pd
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, TensorDataset
from torch.optim import Adam
import numpy as np
#from lwm_model import LWM, load_model
import warnings
warnings.filterwarnings('ignore')
from input_preprocess import *
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Folders
# MODELS_FOLDER = 'models/'
def dataset_gen(preprocessed_chs, input_type, lwm_model):
if input_type in ['cls_emb', 'channel_emb']:
dataset = prepare_for_LWM(preprocessed_chs, device)
elif input_type == 'raw':
dataset = create_raw_dataset(preprocessed_chs, device)
if input_type in ['cls_emb','channel_emb']:
# Process data through LWM
lwm_loss, embedding_data = evaluate(lwm_model, dataset)
print(f'LWM loss: {lwm_loss:.4f}')
if input_type == 'cls_emb':
embedding_data = embedding_data[:, 0]
elif input_type == 'channel_emb':
embedding_data = embedding_data[:, 1:]
dataset = embedding_data.float()
return dataset
def prepare_for_LWM(data, device, batch_size=64, shuffle=False):
input_ids, masked_tokens, masked_pos = zip(*data)
input_ids_tensor = torch.tensor(input_ids, device=device).float()
masked_tokens_tensor = torch.tensor(masked_tokens, device=device).float()
masked_pos_tensor = torch.tensor(masked_pos, device=device).long()
dataset = TensorDataset(input_ids_tensor, masked_tokens_tensor, masked_pos_tensor)
return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
def create_raw_dataset(data, device):
"""Create a dataset for raw channel data."""
input_ids, _, _ = zip(*data)
input_data = torch.tensor(input_ids, device=device)[:, 1:]
return input_data.float()
def label_gen(task, data, scenario, n_beams=64):
idxs = np.where(data['user']['LoS'] != -1)[0]
if task == 'LoS/NLoS Classification':
label = data['user']['LoS'][idxs]
elif task == 'Beam Prediction':
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario)
n_users = len(data['user']['channel'])
n_subbands = 1
fov = 120
# Setup Beamformers
beam_angles = np.around(np.arange(-fov/2, fov/2+.1, fov/(n_beams-1)), 2)
F1 = np.array([steering_vec(parameters['bs_antenna']['shape'],
phi=azi*np.pi/180,
kd=2*np.pi*parameters['bs_antenna']['spacing']).squeeze()
for azi in beam_angles])
full_dbm = np.zeros((n_beams, n_subbands, n_users), dtype=float)
for ue_idx in tqdm(range(n_users), desc='Computing the channel for each user'):
if data['user']['LoS'][ue_idx] == -1:
full_dbm[:,:,ue_idx] = np.nan
else:
chs = F1 @ data['user']['channel'][ue_idx]
full_linear = np.abs(np.mean(chs.squeeze().reshape((n_beams, n_subbands, -1)), axis=-1))
full_dbm[:,:,ue_idx] = np.around(20*np.log10(full_linear) + 30, 1)
best_beams = np.argmax(np.mean(full_dbm,axis=1), axis=0)
best_beams = best_beams.astype(float)
best_beams[np.isnan(full_dbm[0,0,:])] = np.nan
max_bf_pwr = np.max(np.mean(full_dbm,axis=1), axis=0)
label = best_beams[idxs]
return label.astype(int)
def steering_vec(array, phi=0, theta=0, kd=np.pi):
# phi = azimuth
# theta = elevation
idxs = DeepMIMOv3.ant_indices(array)
resp = DeepMIMOv3.array_response(idxs, phi, theta+np.pi/2, kd)
return resp / np.linalg.norm(resp)
def evaluate(model, dataloader):
model.eval()
running_loss = 0.0
outputs = []
criterionMCM = nn.MSELoss()
with torch.no_grad():
for batch in dataloader:
input_ids = batch[0]
masked_tokens = batch[1]
masked_pos = batch[2]
logits_lm, output = model(input_ids, masked_pos)
output_batch_preproc = output
outputs.append(output_batch_preproc)
loss_lm = criterionMCM(logits_lm, masked_tokens)
loss = loss_lm/torch.var(masked_tokens)
running_loss += loss.item()
average_loss = running_loss / len(dataloader)
output_total = torch.cat(outputs, dim=0)
return average_loss, output_total
def label_prepend(deepmimo_data, preprocessed_chs, task, scenario_idxs, n_beams=64):
labels = []
for scenario_idx in scenario_idxs:
scenario_name = scenarios_list()[scenario_idx]
# data = DeepMIMO_data_gen(scenario_name)
data = deepmimo_data[scenario_idx]
labels.extend(label_gen(task, data, scenario_name, n_beams=n_beams))
preprocessed_chs = [preprocessed_chs[i] + [labels[i]] for i in range(len(preprocessed_chs))]
return preprocessed_chs |