Fix character whitelist
Browse files- README.md +3 -3
- tokenizer_config.json +8 -1
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
-
value:
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-Dutch
|
@@ -87,7 +87,7 @@ processor = Wav2Vec2Processor.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-f
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-frisian")
|
88 |
model.to("cuda")
|
89 |
|
90 |
-
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”]'
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
@@ -117,7 +117,7 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|
117 |
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
118 |
```
|
119 |
|
120 |
-
**Test Result**:
|
121 |
|
122 |
|
123 |
## Training
|
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
+
value: 16.25
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-53-Dutch
|
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-frisian")
|
88 |
model.to("cuda")
|
89 |
|
90 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\'\“\%\‘\”]'
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
|
|
117 |
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
118 |
```
|
119 |
|
120 |
+
**Test Result**: 16.25 %
|
121 |
|
122 |
|
123 |
## Training
|
tokenizer_config.json
CHANGED
@@ -1 +1,8 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"unk_token": "<unk>",
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"pad_token": "<pad>",
|
6 |
+
"do_lower_case": true,
|
7 |
+
"word_delimiter_token": "|"
|
8 |
+
}
|