File size: 3,187 Bytes
f198d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
license: mit
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: HuggingFaceH4/mistral-7b-sft-beta
model-index:
- name: zephyr-deita-kto
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: HuggingFaceH4/mistral-7b-sft-beta
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

rl: kto_pair
datasets:
  - path: winglian/deita-nectar
    split: train_dpo
    type: zephyr.nectar
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./zephyr-deita-kto
save_total_limit: 3
hub_model_id: openaccess-ai-collective/kto-zephyr-deita-nectar

adapter: lora
lora_model_dir:

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false

lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: dpo-zephyr-deita-nectar
wandb_entity: oaaic
wandb_watch:
wandb_run_id: kto
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilion: 0.00001
lr_scheduler: cosine
learning_rate: 1.0e-5

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
eval_steps:
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 45
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
save_safetensors: true

dataloader_num_workers: 16
dataloader_pin_memory: true

```

</details><br>

# zephyr-deita-kto

This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 135

### Training results



### Framework versions

- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0