Update README.md
Browse files
README.md
CHANGED
@@ -35,7 +35,7 @@ prompt = "<|prompt|>How are you?</s><|answer|>"
|
|
35 |
## Summary
|
36 |
|
37 |
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
|
38 |
-
- Base model: [openlm-research/
|
39 |
- Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28) personalized
|
40 |
|
41 |
|
@@ -54,7 +54,7 @@ import torch
|
|
54 |
from transformers import pipeline
|
55 |
|
56 |
generate_text = pipeline(
|
57 |
-
model="h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-
|
58 |
torch_dtype="auto",
|
59 |
trust_remote_code=True,
|
60 |
use_fast=False,
|
@@ -92,13 +92,13 @@ from h2oai_pipeline import H2OTextGenerationPipeline
|
|
92 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
93 |
|
94 |
tokenizer = AutoTokenizer.from_pretrained(
|
95 |
-
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-
|
96 |
use_fast=False,
|
97 |
padding_side="left",
|
98 |
trust_remote_code=True,
|
99 |
)
|
100 |
model = AutoModelForCausalLM.from_pretrained(
|
101 |
-
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-
|
102 |
torch_dtype="auto",
|
103 |
device_map={"": "cuda:0"},
|
104 |
trust_remote_code=True,
|
@@ -124,7 +124,7 @@ You may also construct the pipeline from the loaded model and tokenizer yourself
|
|
124 |
```python
|
125 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
126 |
|
127 |
-
model_name = "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-
|
128 |
# Important: The prompt needs to be in the same format the model was trained with.
|
129 |
# You can find an example prompt in the experiment logs.
|
130 |
prompt = "<|prompt|>How are you?</s><|answer|>"
|
@@ -165,20 +165,20 @@ print(answer)
|
|
165 |
```
|
166 |
LlamaForCausalLM(
|
167 |
(model): LlamaModel(
|
168 |
-
(embed_tokens): Embedding(32000,
|
169 |
(layers): ModuleList(
|
170 |
-
(0-
|
171 |
(self_attn): LlamaAttention(
|
172 |
-
(q_proj): Linear(in_features=
|
173 |
-
(k_proj): Linear(in_features=
|
174 |
-
(v_proj): Linear(in_features=
|
175 |
-
(o_proj): Linear(in_features=
|
176 |
(rotary_emb): LlamaRotaryEmbedding()
|
177 |
)
|
178 |
(mlp): LlamaMLP(
|
179 |
-
(gate_proj): Linear(in_features=
|
180 |
-
(down_proj): Linear(in_features=
|
181 |
-
(up_proj): Linear(in_features=
|
182 |
(act_fn): SiLUActivation()
|
183 |
)
|
184 |
(input_layernorm): LlamaRMSNorm()
|
@@ -187,7 +187,7 @@ LlamaForCausalLM(
|
|
187 |
)
|
188 |
(norm): LlamaRMSNorm()
|
189 |
)
|
190 |
-
(lm_head): Linear(in_features=
|
191 |
)
|
192 |
```
|
193 |
|
|
|
35 |
## Summary
|
36 |
|
37 |
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
|
38 |
+
- Base model: [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b)
|
39 |
- Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28) personalized
|
40 |
|
41 |
|
|
|
54 |
from transformers import pipeline
|
55 |
|
56 |
generate_text = pipeline(
|
57 |
+
model="h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b",
|
58 |
torch_dtype="auto",
|
59 |
trust_remote_code=True,
|
60 |
use_fast=False,
|
|
|
92 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
93 |
|
94 |
tokenizer = AutoTokenizer.from_pretrained(
|
95 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b",
|
96 |
use_fast=False,
|
97 |
padding_side="left",
|
98 |
trust_remote_code=True,
|
99 |
)
|
100 |
model = AutoModelForCausalLM.from_pretrained(
|
101 |
+
"h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b",
|
102 |
torch_dtype="auto",
|
103 |
device_map={"": "cuda:0"},
|
104 |
trust_remote_code=True,
|
|
|
124 |
```python
|
125 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
126 |
|
127 |
+
model_name = "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b" # either local folder or huggingface model name
|
128 |
# Important: The prompt needs to be in the same format the model was trained with.
|
129 |
# You can find an example prompt in the experiment logs.
|
130 |
prompt = "<|prompt|>How are you?</s><|answer|>"
|
|
|
165 |
```
|
166 |
LlamaForCausalLM(
|
167 |
(model): LlamaModel(
|
168 |
+
(embed_tokens): Embedding(32000, 4096, padding_idx=0)
|
169 |
(layers): ModuleList(
|
170 |
+
(0-31): 32 x LlamaDecoderLayer(
|
171 |
(self_attn): LlamaAttention(
|
172 |
+
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
173 |
+
(k_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
174 |
+
(v_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
175 |
+
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
|
176 |
(rotary_emb): LlamaRotaryEmbedding()
|
177 |
)
|
178 |
(mlp): LlamaMLP(
|
179 |
+
(gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
|
180 |
+
(down_proj): Linear(in_features=11008, out_features=4096, bias=False)
|
181 |
+
(up_proj): Linear(in_features=4096, out_features=11008, bias=False)
|
182 |
(act_fn): SiLUActivation()
|
183 |
)
|
184 |
(input_layernorm): LlamaRMSNorm()
|
|
|
187 |
)
|
188 |
(norm): LlamaRMSNorm()
|
189 |
)
|
190 |
+
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
|
191 |
)
|
192 |
```
|
193 |
|