wolfram commited on
Commit
5039221
·
verified ·
1 Parent(s): 467ee59

Upload tabbyAPI config.yml

Browse files
Files changed (1) hide show
  1. config.yml +222 -0
config.yml ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sample YAML file for configuration.
2
+ # Comment and uncomment values as needed.
3
+ # Every value has a default within the application.
4
+ # This file serves to be a drop in for config.yml
5
+
6
+ # Unless specified in the comments, DO NOT put these options in quotes!
7
+ # You can use https://www.yamllint.com/ if you want to check your YAML formatting.
8
+
9
+ # Options for networking
10
+ network:
11
+ # The IP to host on (default: 127.0.0.1).
12
+ # Use 0.0.0.0 to expose on all network adapters.
13
+ host: 127.0.0.1
14
+
15
+ # The port to host on (default: 5000).
16
+ port: 5000
17
+
18
+ # Disable HTTP token authentication with requests.
19
+ # WARNING: This will make your instance vulnerable!
20
+ # Turn on this option if you are ONLY connecting from localhost.
21
+ disable_auth: false
22
+
23
+ # Send tracebacks over the API (default: False).
24
+ # NOTE: Only enable this for debug purposes.
25
+ send_tracebacks: false
26
+
27
+ # Select API servers to enable (default: ["OAI"]).
28
+ # Possible values: OAI, Kobold.
29
+ api_servers: ["OAI"]
30
+
31
+ # Options for logging
32
+ logging:
33
+ # Enable prompt logging (default: False).
34
+ log_prompt: false
35
+
36
+ # Enable generation parameter logging (default: False).
37
+ log_generation_params: false
38
+
39
+ # Enable request logging (default: False).
40
+ # NOTE: Only use this for debugging!
41
+ log_requests: false
42
+
43
+ # Options for model overrides and loading
44
+ # Please read the comments to understand how arguments are handled
45
+ # between initial and API loads
46
+ model:
47
+ # Directory to look for models (default: models).
48
+ # Windows users, do NOT put this path in quotes!
49
+ model_dir: models
50
+
51
+ # Allow direct loading of models from a completion or chat completion request (default: False).
52
+ # This method of loading is strict by default.
53
+ # Enable dummy models to add exceptions for invalid model names.
54
+ inline_model_loading: false
55
+
56
+ # Sends dummy model names when the models endpoint is queried. (default: False)
57
+ # Enable this if the client is looking for specific OAI models.
58
+ use_dummy_models: false
59
+
60
+ # A list of fake model names that are sent via the /v1/models endpoint. (default: ["gpt-3.5-turbo"])
61
+ # Also used as bypasses for strict mode if inline_model_loading is true.
62
+ dummy_model_names: ["gpt-3.5-turbo"]
63
+
64
+ # An initial model to load.
65
+ # Make sure the model is located in the model directory!
66
+ # REQUIRED: This must be filled out to load a model on startup.
67
+ ################################################################################
68
+ model_name: wolfram_Mistral-Large-Instruct-2411-2.75bpw-h6-exl2
69
+ ################################################################################
70
+
71
+ # Names of args to use as a fallback for API load requests (default: []).
72
+ # For example, if you always want cache_mode to be Q4 instead of on the inital model load, add "cache_mode" to this array.
73
+ # Example: ['max_seq_len', 'cache_mode'].
74
+ use_as_default: []
75
+
76
+ # Max sequence length (default: Empty).
77
+ # Fetched from the model's base sequence length in config.json by default.
78
+ ################################################################################
79
+ max_seq_len: 32768 # /131072
80
+ ################################################################################
81
+
82
+ # Load model with tensor parallelism.
83
+ # Falls back to autosplit if GPU split isn't provided.
84
+ # This ignores the gpu_split_auto value.
85
+ tensor_parallel: false
86
+
87
+ # Automatically allocate resources to GPUs (default: True).
88
+ # Not parsed for single GPU users.
89
+ gpu_split_auto: true
90
+
91
+ # Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0).
92
+ # Represented as an array of MB per GPU.
93
+ autosplit_reserve: [96]
94
+
95
+ # An integer array of GBs of VRAM to split between GPUs (default: []).
96
+ # Used with tensor parallelism.
97
+ gpu_split: []
98
+
99
+ # Rope scale (default: 1.0).
100
+ # Same as compress_pos_emb.
101
+ # Use if the model was trained on long context with rope.
102
+ # Leave blank to pull the value from the model.
103
+ rope_scale: 1.0
104
+
105
+ # Rope alpha (default: None).
106
+ # Same as alpha_value. Set to "auto" to auto-calculate.
107
+ # Leaving this value blank will either pull from the model or auto-calculate.
108
+ rope_alpha:
109
+
110
+ # Enable different cache modes for VRAM savings (default: FP16).
111
+ # Possible values: 'FP16', 'Q8', 'Q6', 'Q4'.
112
+ ################################################################################
113
+ cache_mode: Q4
114
+ ################################################################################
115
+
116
+ # Size of the prompt cache to allocate (default: max_seq_len).
117
+ # Must be a multiple of 256 and can't be less than max_seq_len.
118
+ # For CFG, set this to 2 * max_seq_len.
119
+ cache_size:
120
+
121
+ # Chunk size for prompt ingestion (default: 2048).
122
+ # A lower value reduces VRAM usage but decreases ingestion speed.
123
+ # NOTE: Effects vary depending on the model.
124
+ # An ideal value is between 512 and 4096.
125
+ chunk_size: 2048
126
+
127
+ # Set the maximum number of prompts to process at one time (default: None/Automatic).
128
+ # Automatically calculated if left blank.
129
+ # NOTE: Only available for Nvidia ampere (30 series) and above GPUs.
130
+ max_batch_size:
131
+
132
+ # Set the prompt template for this model. (default: None)
133
+ # If empty, attempts to look for the model's chat template.
134
+ # If a model contains multiple templates in its tokenizer_config.json,
135
+ # set prompt_template to the name of the template you want to use.
136
+ # NOTE: Only works with chat completion message lists!
137
+ prompt_template:
138
+
139
+ # Number of experts to use per token.
140
+ # Fetched from the model's config.json if empty.
141
+ # NOTE: For MoE models only.
142
+ # WARNING: Don't set this unless you know what you're doing!
143
+ num_experts_per_token:
144
+
145
+ # Options for draft models (speculative decoding)
146
+ # This will use more VRAM!
147
+ draft_model:
148
+ # Directory to look for draft models (default: models)
149
+ draft_model_dir: models
150
+
151
+ # An initial draft model to load.
152
+ # Ensure the model is in the model directory.
153
+ draft_model_name:
154
+
155
+ # Rope scale for draft models (default: 1.0).
156
+ # Same as compress_pos_emb.
157
+ # Use if the draft model was trained on long context with rope.
158
+ draft_rope_scale: 1.0
159
+
160
+ # Rope alpha for draft models (default: None).
161
+ # Same as alpha_value. Set to "auto" to auto-calculate.
162
+ # Leaving this value blank will either pull from the model or auto-calculate.
163
+ draft_rope_alpha:
164
+
165
+ # Cache mode for draft models to save VRAM (default: FP16).
166
+ # Possible values: 'FP16', 'Q8', 'Q6', 'Q4'.
167
+ draft_cache_mode: FP16
168
+
169
+ # Options for Loras
170
+ lora:
171
+ # Directory to look for LoRAs (default: loras).
172
+ lora_dir: loras
173
+
174
+ # List of LoRAs to load and associated scaling factors (default scale: 1.0).
175
+ # For the YAML file, add each entry as a YAML list:
176
+ # - name: lora1
177
+ # scaling: 1.0
178
+ loras:
179
+
180
+ # Options for embedding models and loading.
181
+ # NOTE: Embeddings requires the "extras" feature to be installed
182
+ # Install it via "pip install .[extras]"
183
+ embeddings:
184
+ # Directory to look for embedding models (default: models).
185
+ embedding_model_dir: models
186
+
187
+ # Device to load embedding models on (default: cpu).
188
+ # Possible values: cpu, auto, cuda.
189
+ # NOTE: It's recommended to load embedding models on the CPU.
190
+ # If using an AMD GPU, set this value to 'cuda'.
191
+ embeddings_device: cpu
192
+
193
+ # An initial embedding model to load on the infinity backend.
194
+ embedding_model_name:
195
+
196
+ # Options for Sampling
197
+ sampling:
198
+ # Select a sampler override preset (default: None).
199
+ # Find this in the sampler-overrides folder.
200
+ # This overrides default fallbacks for sampler values that are passed to the API.
201
+ override_preset:
202
+
203
+ # Options for development and experimentation
204
+ developer:
205
+ # Skip Exllamav2 version check (default: False).
206
+ # WARNING: It's highly recommended to update your dependencies rather than enabling this flag.
207
+ unsafe_launch: false
208
+
209
+ # Disable API request streaming (default: False).
210
+ disable_request_streaming: false
211
+
212
+ # Enable the torch CUDA malloc backend (default: False).
213
+ cuda_malloc_backend: false
214
+
215
+ # Run asyncio using Uvloop or Winloop which can improve performance.
216
+ # NOTE: It's recommended to enable this, but if something breaks turn this off.
217
+ uvloop: false
218
+
219
+ # Set process to use a higher priority.
220
+ # For realtime process priority, run as administrator or sudo.
221
+ # Otherwise, the priority will be set to high.
222
+ realtime_process_priority: false