Update README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,10 @@ pip install numpy torch torchaudio einops transformers efficientnet_pytorch
|
|
22 |
import torch
|
23 |
from transformers import AutoModel, PreTrainedTokenizerFast
|
24 |
import torchaudio
|
|
|
|
|
25 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
26 |
# use the model trained on AudioCaps
|
27 |
model = AutoModel.from_pretrained(
|
28 |
"wsntxxn/effb2-trm-audiocaps-captioning",
|
@@ -31,6 +34,7 @@ model = AutoModel.from_pretrained(
|
|
31 |
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
32 |
"wsntxxn/audiocaps-simple-tokenizer"
|
33 |
)
|
|
|
34 |
# inference on a single audio clip
|
35 |
wav, sr = torchaudio.load("/path/to/file.wav")
|
36 |
wav = torchaudio.functional.resample(wav, sr, model.config.sample_rate)
|
@@ -43,14 +47,18 @@ with torch.no_grad():
|
|
43 |
)
|
44 |
caption = tokenizer.decode(word_idxs[0], skip_special_tokens=True)
|
45 |
print(caption)
|
|
|
46 |
# inference on a batch
|
47 |
wav1, sr1 = torchaudio.load("/path/to/file1.wav")
|
48 |
wav1 = torchaudio.functional.resample(wav1, sr1, model.config.sample_rate)
|
49 |
wav1 = wav1.mean(0) if wav1.size(0) > 1 else wav1[0]
|
|
|
50 |
wav2, sr2 = torchaudio.load("/path/to/file2.wav")
|
51 |
wav2 = torchaudio.functional.resample(wav2, sr2, model.config.sample_rate)
|
52 |
wav2 = wav2.mean(0) if wav2.size(0) > 1 else wav2[0]
|
|
|
53 |
wav_batch = torch.nn.utils.rnn.pad_sequence([wav1, wav2], batch_first=True)
|
|
|
54 |
with torch.no_grad():
|
55 |
word_idxs = model(
|
56 |
audio=wav_batch,
|
|
|
22 |
import torch
|
23 |
from transformers import AutoModel, PreTrainedTokenizerFast
|
24 |
import torchaudio
|
25 |
+
|
26 |
+
|
27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
# use the model trained on AudioCaps
|
30 |
model = AutoModel.from_pretrained(
|
31 |
"wsntxxn/effb2-trm-audiocaps-captioning",
|
|
|
34 |
tokenizer = PreTrainedTokenizerFast.from_pretrained(
|
35 |
"wsntxxn/audiocaps-simple-tokenizer"
|
36 |
)
|
37 |
+
|
38 |
# inference on a single audio clip
|
39 |
wav, sr = torchaudio.load("/path/to/file.wav")
|
40 |
wav = torchaudio.functional.resample(wav, sr, model.config.sample_rate)
|
|
|
47 |
)
|
48 |
caption = tokenizer.decode(word_idxs[0], skip_special_tokens=True)
|
49 |
print(caption)
|
50 |
+
|
51 |
# inference on a batch
|
52 |
wav1, sr1 = torchaudio.load("/path/to/file1.wav")
|
53 |
wav1 = torchaudio.functional.resample(wav1, sr1, model.config.sample_rate)
|
54 |
wav1 = wav1.mean(0) if wav1.size(0) > 1 else wav1[0]
|
55 |
+
|
56 |
wav2, sr2 = torchaudio.load("/path/to/file2.wav")
|
57 |
wav2 = torchaudio.functional.resample(wav2, sr2, model.config.sample_rate)
|
58 |
wav2 = wav2.mean(0) if wav2.size(0) > 1 else wav2[0]
|
59 |
+
|
60 |
wav_batch = torch.nn.utils.rnn.pad_sequence([wav1, wav2], batch_first=True)
|
61 |
+
|
62 |
with torch.no_grad():
|
63 |
word_idxs = model(
|
64 |
audio=wav_batch,
|