wwydmanski commited on
Commit
be983b0
·
verified ·
1 Parent(s): 21b7fa1

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10053
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: Snowflake/snowflake-arctic-embed-l-v2.0
10
+ widget:
11
+ - source_sentence: Nursing Reform
12
+ sentences:
13
+ - 'Staff nurses speak out on reform. '
14
+ - 'Synthesis of graphene with different layers on paper-like sintered stainless
15
+ steel fibers and its application as a metal-free catalyst for catalytic wet peroxide
16
+ oxidation of phenol. '
17
+ - 'Nursing reformation. '
18
+ - source_sentence: NiTiO3 composite
19
+ sentences:
20
+ - 'Fabrication and electromagnetic performance of talc/NiTiO 3 composite. '
21
+ - 'Nickel-titanium usage and breakage: an update. '
22
+ - 'Innervational plasticity of the oculomotor system. '
23
+ - source_sentence: Single-Session Competency Framework
24
+ sentences:
25
+ - 'Competency assessment: one step at the time. '
26
+ - 'Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. '
27
+ - 'Describing a Clinical Group Coding Method for Identifying Competencies in an
28
+ Allied Health Single Session. '
29
+ - source_sentence: Streptococcal myositis treatment outcomes
30
+ sentences:
31
+ - 'Evaluation of penicillin and hyperbaric oxygen in the treatment of streptococcal
32
+ myositis. '
33
+ - 'Polymicrobial myositis. '
34
+ - 'Parse''s criteria for evaluation of theory with a comparison of Fawcett''s and
35
+ Parse''s approaches. '
36
+ - source_sentence: Risk-based water quality monitoring framework
37
+ sentences:
38
+ - 'Development of a new risk-based framework to guide investment in water quality
39
+ monitoring. '
40
+ - 'NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive
41
+ oxygen species-dependent signal transduction. '
42
+ - 'Water quality monitoring strategies - A review and future perspectives. '
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - cosine_accuracy
47
+ model-index:
48
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
49
+ results:
50
+ - task:
51
+ type: triplet
52
+ name: Triplet
53
+ dataset:
54
+ name: triplet dev
55
+ type: triplet-dev
56
+ metrics:
57
+ - type: cosine_accuracy
58
+ value: 0.72
59
+ name: Cosine Accuracy
60
+ ---
61
+
62
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
63
+
64
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
65
+
66
+ ## Model Details
67
+
68
+ ### Model Description
69
+ - **Model Type:** Sentence Transformer
70
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) <!-- at revision 7f311bb640ad3babc0a4e3a8873240dcba44c9d2 -->
71
+ - **Maximum Sequence Length:** 8192 tokens
72
+ - **Output Dimensionality:** 1024 dimensions
73
+ - **Similarity Function:** Cosine Similarity
74
+ - **Training Dataset:**
75
+ - json
76
+ <!-- - **Language:** Unknown -->
77
+ <!-- - **License:** Unknown -->
78
+
79
+ ### Model Sources
80
+
81
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
82
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
83
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
84
+
85
+ ### Full Model Architecture
86
+
87
+ ```
88
+ SentenceTransformer(
89
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
90
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
91
+ (2): Normalize()
92
+ )
93
+ ```
94
+
95
+ ## Usage
96
+
97
+ ### Direct Usage (Sentence Transformers)
98
+
99
+ First install the Sentence Transformers library:
100
+
101
+ ```bash
102
+ pip install -U sentence-transformers
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+ ```python
107
+ from sentence_transformers import SentenceTransformer
108
+
109
+ # Download from the 🤗 Hub
110
+ model = SentenceTransformer("sentence_transformers_model_id")
111
+ # Run inference
112
+ sentences = [
113
+ 'Risk-based water quality monitoring framework',
114
+ 'Development of a new risk-based framework to guide investment in water quality monitoring. ',
115
+ 'Water quality monitoring strategies - A review and future perspectives. ',
116
+ ]
117
+ embeddings = model.encode(sentences)
118
+ print(embeddings.shape)
119
+ # [3, 1024]
120
+
121
+ # Get the similarity scores for the embeddings
122
+ similarities = model.similarity(embeddings, embeddings)
123
+ print(similarities.shape)
124
+ # [3, 3]
125
+ ```
126
+
127
+ <!--
128
+ ### Direct Usage (Transformers)
129
+
130
+ <details><summary>Click to see the direct usage in Transformers</summary>
131
+
132
+ </details>
133
+ -->
134
+
135
+ <!--
136
+ ### Downstream Usage (Sentence Transformers)
137
+
138
+ You can finetune this model on your own dataset.
139
+
140
+ <details><summary>Click to expand</summary>
141
+
142
+ </details>
143
+ -->
144
+
145
+ <!--
146
+ ### Out-of-Scope Use
147
+
148
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
149
+ -->
150
+
151
+ ## Evaluation
152
+
153
+ ### Metrics
154
+
155
+ #### Triplet
156
+
157
+ * Dataset: `triplet-dev`
158
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
159
+
160
+ | Metric | Value |
161
+ |:--------------------|:---------|
162
+ | **cosine_accuracy** | **0.72** |
163
+
164
+ <!--
165
+ ## Bias, Risks and Limitations
166
+
167
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
168
+ -->
169
+
170
+ <!--
171
+ ### Recommendations
172
+
173
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
174
+ -->
175
+
176
+ ## Training Details
177
+
178
+ ### Training Dataset
179
+
180
+ #### json
181
+
182
+ * Dataset: json
183
+ * Size: 10,053 training samples
184
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
185
+ * Approximate statistics based on the first 1000 samples:
186
+ | | anchor | positive | negative |
187
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
188
+ | type | string | string | string |
189
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.58 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 26.91 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.99 tokens</li><li>max: 61 tokens</li></ul> |
190
+ * Samples:
191
+ | anchor | positive | negative |
192
+ |:--------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|
193
+ | <code>Pediatric Infectious Disease Control</code> | <code>[Urgent tasks in scientific studies concerning the control of infectious diseases in children]. </code> | <code>Pediatric workforce: a look at pediatric infectious diseases data from the American Board of Pediatrics. </code> |
194
+ | <code>Thermal coefficient of phase shift</code> | <code>Thermal characteristics of phase shift in jacketed optical fibers. </code> | <code>Thermal effects. </code> |
195
+ | <code>Renal biomarkers in heart failure</code> | <code>Current and novel renal biomarkers in heart failure. </code> | <code>Cardiac biomarkers of heart failure in chronic kidney disease. </code> |
196
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
197
+ ```json
198
+ {
199
+ "scale": 20.0,
200
+ "similarity_fct": "cos_sim"
201
+ }
202
+ ```
203
+
204
+ ### Training Hyperparameters
205
+ #### Non-Default Hyperparameters
206
+
207
+ - `eval_strategy`: steps
208
+ - `per_device_train_batch_size`: 256
209
+ - `per_device_eval_batch_size`: 256
210
+ - `num_train_epochs`: 1
211
+ - `lr_scheduler_type`: cosine_with_restarts
212
+ - `warmup_ratio`: 0.1
213
+ - `bf16`: True
214
+ - `batch_sampler`: no_duplicates
215
+
216
+ #### All Hyperparameters
217
+ <details><summary>Click to expand</summary>
218
+
219
+ - `overwrite_output_dir`: False
220
+ - `do_predict`: False
221
+ - `eval_strategy`: steps
222
+ - `prediction_loss_only`: True
223
+ - `per_device_train_batch_size`: 256
224
+ - `per_device_eval_batch_size`: 256
225
+ - `per_gpu_train_batch_size`: None
226
+ - `per_gpu_eval_batch_size`: None
227
+ - `gradient_accumulation_steps`: 1
228
+ - `eval_accumulation_steps`: None
229
+ - `torch_empty_cache_steps`: None
230
+ - `learning_rate`: 5e-05
231
+ - `weight_decay`: 0.0
232
+ - `adam_beta1`: 0.9
233
+ - `adam_beta2`: 0.999
234
+ - `adam_epsilon`: 1e-08
235
+ - `max_grad_norm`: 1.0
236
+ - `num_train_epochs`: 1
237
+ - `max_steps`: -1
238
+ - `lr_scheduler_type`: cosine_with_restarts
239
+ - `lr_scheduler_kwargs`: {}
240
+ - `warmup_ratio`: 0.1
241
+ - `warmup_steps`: 0
242
+ - `log_level`: passive
243
+ - `log_level_replica`: warning
244
+ - `log_on_each_node`: True
245
+ - `logging_nan_inf_filter`: True
246
+ - `save_safetensors`: True
247
+ - `save_on_each_node`: False
248
+ - `save_only_model`: False
249
+ - `restore_callback_states_from_checkpoint`: False
250
+ - `no_cuda`: False
251
+ - `use_cpu`: False
252
+ - `use_mps_device`: False
253
+ - `seed`: 42
254
+ - `data_seed`: None
255
+ - `jit_mode_eval`: False
256
+ - `use_ipex`: False
257
+ - `bf16`: True
258
+ - `fp16`: False
259
+ - `fp16_opt_level`: O1
260
+ - `half_precision_backend`: auto
261
+ - `bf16_full_eval`: False
262
+ - `fp16_full_eval`: False
263
+ - `tf32`: None
264
+ - `local_rank`: 0
265
+ - `ddp_backend`: None
266
+ - `tpu_num_cores`: None
267
+ - `tpu_metrics_debug`: False
268
+ - `debug`: []
269
+ - `dataloader_drop_last`: False
270
+ - `dataloader_num_workers`: 0
271
+ - `dataloader_prefetch_factor`: None
272
+ - `past_index`: -1
273
+ - `disable_tqdm`: False
274
+ - `remove_unused_columns`: True
275
+ - `label_names`: None
276
+ - `load_best_model_at_end`: False
277
+ - `ignore_data_skip`: False
278
+ - `fsdp`: []
279
+ - `fsdp_min_num_params`: 0
280
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
283
+ - `deepspeed`: None
284
+ - `label_smoothing_factor`: 0.0
285
+ - `optim`: adamw_torch
286
+ - `optim_args`: None
287
+ - `adafactor`: False
288
+ - `group_by_length`: False
289
+ - `length_column_name`: length
290
+ - `ddp_find_unused_parameters`: None
291
+ - `ddp_bucket_cap_mb`: None
292
+ - `ddp_broadcast_buffers`: False
293
+ - `dataloader_pin_memory`: True
294
+ - `dataloader_persistent_workers`: False
295
+ - `skip_memory_metrics`: True
296
+ - `use_legacy_prediction_loop`: False
297
+ - `push_to_hub`: False
298
+ - `resume_from_checkpoint`: None
299
+ - `hub_model_id`: None
300
+ - `hub_strategy`: every_save
301
+ - `hub_private_repo`: None
302
+ - `hub_always_push`: False
303
+ - `gradient_checkpointing`: False
304
+ - `gradient_checkpointing_kwargs`: None
305
+ - `include_inputs_for_metrics`: False
306
+ - `include_for_metrics`: []
307
+ - `eval_do_concat_batches`: True
308
+ - `fp16_backend`: auto
309
+ - `push_to_hub_model_id`: None
310
+ - `push_to_hub_organization`: None
311
+ - `mp_parameters`:
312
+ - `auto_find_batch_size`: False
313
+ - `full_determinism`: False
314
+ - `torchdynamo`: None
315
+ - `ray_scope`: last
316
+ - `ddp_timeout`: 1800
317
+ - `torch_compile`: False
318
+ - `torch_compile_backend`: None
319
+ - `torch_compile_mode`: None
320
+ - `dispatch_batches`: None
321
+ - `split_batches`: None
322
+ - `include_tokens_per_second`: False
323
+ - `include_num_input_tokens_seen`: False
324
+ - `neftune_noise_alpha`: None
325
+ - `optim_target_modules`: None
326
+ - `batch_eval_metrics`: False
327
+ - `eval_on_start`: False
328
+ - `use_liger_kernel`: False
329
+ - `eval_use_gather_object`: False
330
+ - `average_tokens_across_devices`: False
331
+ - `prompts`: None
332
+ - `batch_sampler`: no_duplicates
333
+ - `multi_dataset_batch_sampler`: proportional
334
+
335
+ </details>
336
+
337
+ ### Training Logs
338
+ | Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
339
+ |:-----:|:----:|:-------------:|:---------------------------:|
340
+ | 0 | 0 | - | 0.58 |
341
+ | 0.025 | 1 | 1.922 | - |
342
+ | 0.05 | 2 | 1.7637 | - |
343
+ | 0.075 | 3 | 1.8049 | - |
344
+ | 0.1 | 4 | 1.4954 | - |
345
+ | 0.125 | 5 | 1.7383 | - |
346
+ | 0.15 | 6 | 1.4773 | - |
347
+ | 0.175 | 7 | 1.3947 | - |
348
+ | 0.2 | 8 | 1.5337 | - |
349
+ | 0.225 | 9 | 1.2705 | - |
350
+ | 0.25 | 10 | 1.167 | - |
351
+ | 0.275 | 11 | 1.3125 | - |
352
+ | 0.3 | 12 | 1.4049 | - |
353
+ | 0.325 | 13 | 1.3382 | - |
354
+ | 0.35 | 14 | 1.1542 | - |
355
+ | 0.375 | 15 | 1.2514 | - |
356
+ | 0.4 | 16 | 1.1141 | - |
357
+ | 0.425 | 17 | 1.2267 | - |
358
+ | 0.45 | 18 | 1.1781 | - |
359
+ | 0.475 | 19 | 1.269 | - |
360
+ | 0.5 | 20 | 1.0684 | - |
361
+ | 0.525 | 21 | 1.2045 | - |
362
+ | 0.55 | 22 | 0.9869 | - |
363
+ | 0.575 | 23 | 1.2933 | - |
364
+ | 0.6 | 24 | 1.0751 | - |
365
+ | 0.625 | 25 | 1.2671 | - |
366
+ | 0.65 | 26 | 1.1874 | - |
367
+ | 0.675 | 27 | 1.241 | - |
368
+ | 0.7 | 28 | 1.1735 | - |
369
+ | 0.725 | 29 | 1.247 | - |
370
+ | 0.75 | 30 | 1.1166 | - |
371
+ | 0.775 | 31 | 1.1484 | - |
372
+ | 0.8 | 32 | 1.2556 | - |
373
+ | 0.825 | 33 | 1.1028 | - |
374
+ | 0.85 | 34 | 1.215 | - |
375
+ | 0.875 | 35 | 1.3421 | - |
376
+ | 0.9 | 36 | 1.1762 | - |
377
+ | 0.925 | 37 | 1.2029 | - |
378
+ | 0.95 | 38 | 1.1283 | - |
379
+ | 0.975 | 39 | 1.0871 | - |
380
+ | 1.0 | 40 | 0.7317 | 0.72 |
381
+
382
+
383
+ ### Framework Versions
384
+ - Python: 3.12.3
385
+ - Sentence Transformers: 3.3.1
386
+ - Transformers: 4.48.0.dev0
387
+ - PyTorch: 2.5.1
388
+ - Accelerate: 1.2.1
389
+ - Datasets: 2.19.0
390
+ - Tokenizers: 0.21.0
391
+
392
+ ## Citation
393
+
394
+ ### BibTeX
395
+
396
+ #### Sentence Transformers
397
+ ```bibtex
398
+ @inproceedings{reimers-2019-sentence-bert,
399
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
400
+ author = "Reimers, Nils and Gurevych, Iryna",
401
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
402
+ month = "11",
403
+ year = "2019",
404
+ publisher = "Association for Computational Linguistics",
405
+ url = "https://arxiv.org/abs/1908.10084",
406
+ }
407
+ ```
408
+
409
+ #### MultipleNegativesRankingLoss
410
+ ```bibtex
411
+ @misc{henderson2017efficient,
412
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
413
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
414
+ year={2017},
415
+ eprint={1705.00652},
416
+ archivePrefix={arXiv},
417
+ primaryClass={cs.CL}
418
+ }
419
+ ```
420
+
421
+ <!--
422
+ ## Glossary
423
+
424
+ *Clearly define terms in order to be accessible across audiences.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Authors
429
+
430
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
431
+ -->
432
+
433
+ <!--
434
+ ## Model Card Contact
435
+
436
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
437
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l-v2.0",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.0.dev0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0.dev0",
5
+ "pytorch": "2.5.1"
6
+ },
7
+ "prompts": {
8
+ "query": "query: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:840b52cf4fd0f0968dc305cf671b6ecdab96850b6987b325871ad9e3ff741eb1
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 8192,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }