File size: 2,182 Bytes
0bdaf07
 
 
9e2fa99
0bdaf07
 
 
e734bf8
0bdaf07
 
 
 
 
 
e734bf8
0bdaf07
f893c7d
0bdaf07
f893c7d
0bdaf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f893c7d
 
 
 
 
 
 
 
 
 
 
 
 
0bdaf07
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
license: apache-2.0
base_model: x2bee/KoModernBERT-base-mlm-v02-ckp02
tags:
- generated_from_trainer
model-index:
- name: KoModernBERT-base-mlm-v02-ckp02
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# KoModernBERT-base-mlm-v02-ckp02

This model is a fine-tuned version of [x2bee/KoModernBERT-base-mlm-v02-ckp02](https://huggingface.co/x2bee/KoModernBERT-base-mlm-v02-ckp02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9006

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 17.1231       | 0.0867 | 3000  | 2.1503          |
| 16.9213       | 0.1734 | 6000  | 2.1170          |
| 16.6843       | 0.2601 | 9000  | 2.0872          |
| 16.501        | 0.3468 | 12000 | 2.0641          |
| 16.2914       | 0.4335 | 15000 | 2.0396          |
| 16.1829       | 0.5201 | 18000 | 2.0157          |
| 15.9756       | 0.6068 | 21000 | 1.9904          |
| 15.7217       | 0.6935 | 24000 | 1.9681          |
| 15.5407       | 0.7802 | 27000 | 1.9437          |
| 15.389        | 0.8669 | 30000 | 1.9219          |
| 15.1363       | 0.9536 | 33000 | 1.9006          |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0