File size: 2,182 Bytes
0bdaf07 9e2fa99 0bdaf07 e734bf8 0bdaf07 e734bf8 0bdaf07 f893c7d 0bdaf07 f893c7d 0bdaf07 f893c7d 0bdaf07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
license: apache-2.0
base_model: x2bee/KoModernBERT-base-mlm-v02-ckp02
tags:
- generated_from_trainer
model-index:
- name: KoModernBERT-base-mlm-v02-ckp02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# KoModernBERT-base-mlm-v02-ckp02
This model is a fine-tuned version of [x2bee/KoModernBERT-base-mlm-v02-ckp02](https://huggingface.co/x2bee/KoModernBERT-base-mlm-v02-ckp02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9006
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 17.1231 | 0.0867 | 3000 | 2.1503 |
| 16.9213 | 0.1734 | 6000 | 2.1170 |
| 16.6843 | 0.2601 | 9000 | 2.0872 |
| 16.501 | 0.3468 | 12000 | 2.0641 |
| 16.2914 | 0.4335 | 15000 | 2.0396 |
| 16.1829 | 0.5201 | 18000 | 2.0157 |
| 15.9756 | 0.6068 | 21000 | 1.9904 |
| 15.7217 | 0.6935 | 24000 | 1.9681 |
| 15.5407 | 0.7802 | 27000 | 1.9437 |
| 15.389 | 0.8669 | 30000 | 1.9219 |
| 15.1363 | 0.9536 | 33000 | 1.9006 |
### Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|